MIPP-Seq: ultra-sensitive rapid detection and validation of low-frequency mosaic mutations.
Mosaic
Sequencing
Somatic
Validate
Variation
Journal
BMC medical genomics
ISSN: 1755-8794
Titre abrégé: BMC Med Genomics
Pays: England
ID NLM: 101319628
Informations de publication
Date de publication:
12 02 2021
12 02 2021
Historique:
received:
03
11
2020
accepted:
03
02
2021
entrez:
13
2
2021
pubmed:
14
2
2021
medline:
26
11
2021
Statut:
epublish
Résumé
Mosaic mutations contribute to numerous human disorders. As such, the identification and precise quantification of mosaic mutations is essential for a wide range of research applications, clinical diagnoses, and early detection of cancers. Currently, the low-throughput nature of single allele assays (e.g., allele-specific ddPCR) commonly used for genotyping known mutations at very low alternate allelic fractions (AAFs) have limited the integration of low-level mosaic analyses into clinical and research applications. The growing importance of mosaic mutations requires a more rapid, low-cost solution for mutation detection and validation. To overcome these limitations, we developed Multiple Independent Primer PCR Sequencing (MIPP-Seq) which combines the power of ultra-deep sequencing and truly independent assays. The accuracy of MIPP-seq to quantifiable detect and measure extremely low allelic fractions was assessed using a combination of SNVs, insertions, and deletions at known allelic fractions in blood and brain derived DNA samples. The Independent amplicon analyses of MIPP-Seq markedly reduce the impact of allelic dropout, amplification bias, PCR-induced, and sequencing artifacts. Using low DNA inputs of either 25 ng or 50 ng of DNA, MIPP-Seq provides sensitive and quantitative assessments of AAFs as low as 0.025% for SNVs, insertion, and deletions. MIPP-Seq provides an ultra-sensitive, low-cost approach for detecting and validating known and novel mutations in a highly scalable system with broad utility spanning both research and clinical diagnostic testing applications. The scalability of MIPP-Seq allows for multiplexing mutations and samples, which dramatically reduce costs of variant validation when compared to methods like ddPCR. By leveraging the power of individual analyses of multiple unique and independent reactions, MIPP-Seq can validate and precisely quantitate extremely low AAFs across multiple tissues and mutational categories including both indels and SNVs. Furthermore, using Illumina sequencing technology, MIPP-seq provides a robust method for accurate detection of novel mutations at an extremely low AAF.
Sections du résumé
BACKGROUND
Mosaic mutations contribute to numerous human disorders. As such, the identification and precise quantification of mosaic mutations is essential for a wide range of research applications, clinical diagnoses, and early detection of cancers. Currently, the low-throughput nature of single allele assays (e.g., allele-specific ddPCR) commonly used for genotyping known mutations at very low alternate allelic fractions (AAFs) have limited the integration of low-level mosaic analyses into clinical and research applications. The growing importance of mosaic mutations requires a more rapid, low-cost solution for mutation detection and validation.
METHODS
To overcome these limitations, we developed Multiple Independent Primer PCR Sequencing (MIPP-Seq) which combines the power of ultra-deep sequencing and truly independent assays. The accuracy of MIPP-seq to quantifiable detect and measure extremely low allelic fractions was assessed using a combination of SNVs, insertions, and deletions at known allelic fractions in blood and brain derived DNA samples.
RESULTS
The Independent amplicon analyses of MIPP-Seq markedly reduce the impact of allelic dropout, amplification bias, PCR-induced, and sequencing artifacts. Using low DNA inputs of either 25 ng or 50 ng of DNA, MIPP-Seq provides sensitive and quantitative assessments of AAFs as low as 0.025% for SNVs, insertion, and deletions.
CONCLUSIONS
MIPP-Seq provides an ultra-sensitive, low-cost approach for detecting and validating known and novel mutations in a highly scalable system with broad utility spanning both research and clinical diagnostic testing applications. The scalability of MIPP-Seq allows for multiplexing mutations and samples, which dramatically reduce costs of variant validation when compared to methods like ddPCR. By leveraging the power of individual analyses of multiple unique and independent reactions, MIPP-Seq can validate and precisely quantitate extremely low AAFs across multiple tissues and mutational categories including both indels and SNVs. Furthermore, using Illumina sequencing technology, MIPP-seq provides a robust method for accurate detection of novel mutations at an extremely low AAF.
Identifiants
pubmed: 33579278
doi: 10.1186/s12920-021-00893-3
pii: 10.1186/s12920-021-00893-3
pmc: PMC7881461
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
47Subventions
Organisme : NINDS NIH HHS
ID : R01 NS032457
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH106883
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007627
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090255
Pays : United States
Organisme : NINDS NIH HHS
ID : RO1 35129
Pays : United States
Organisme : NIA NIH HHS
ID : K08 AG065502
Pays : United States
Organisme : American Brain Tumor Association
ID : BRF1900016
Références
BMC Bioinformatics. 2008 May 29;9:253
pubmed: 18510760
Trends Genet. 2018 Jul;34(7):545-557
pubmed: 29731376
J Mol Diagn. 2018 Jan;20(1):4-27
pubmed: 29154853
NPJ Schizophr. 2018 Apr 13;4(1):7
pubmed: 29654278
Cancer Sci. 2019 Apr;110(4):1148-1155
pubmed: 30742729
J Mol Diagn. 2019 May;21(3):462-470
pubmed: 30731206
Nat Rev Endocrinol. 2019 May;15(5):299-311
pubmed: 30842651
Water Res. 2020 Feb 1;169:115246
pubmed: 31710918
PLoS One. 2017 Jan 18;12(1):e0170199
pubmed: 28099518
Sci Rep. 2018 Oct 8;8(1):14941
pubmed: 30297788
Methods Mol Biol. 2018;1768:173-190
pubmed: 29717444
Sci Rep. 2017 May 8;7(1):1567
pubmed: 28484262
Hum Genomics. 2017 Sep 4;11(1):22
pubmed: 28870239
Front Mol Biosci. 2018 Aug 27;5:76
pubmed: 30211169
Brief Bioinform. 2020 May 19;:
pubmed: 32427285
Anal Chem. 2012 Jan 17;84(2):1003-11
pubmed: 22122760
J Pathol. 2012 Jan;226(2):274-86
pubmed: 21989606
Epilepsy Res. 2019 Sep;155:106161
pubmed: 31295639
Ann Neurol. 2019 Dec;86(6):821-831
pubmed: 31618474
BMC Res Notes. 2019 Feb 27;12(1):106
pubmed: 30813969
Mol Genet Genomics. 2016 Apr;291(2):513-30
pubmed: 26481646
Cold Spring Harb Mol Case Stud. 2020 Jun 12;6(3):
pubmed: 32371413
Neurobiol Dis. 2020 Oct;144:105021
pubmed: 32712267
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Mol Aspects Med. 2020 Apr;72:100828
pubmed: 31711714
Acta Neuropathol. 2019 Dec;138(6):901-912
pubmed: 31377847
Hum Genet. 2018 Feb;137(2):183-193
pubmed: 29417219
Nat Rev Genet. 2012 Dec;13(12):878-90
pubmed: 23154810
Sci Transl Med. 2016 Jul 6;8(346):346ra92
pubmed: 27384348
Respir Res. 2018 Feb 27;19(1):34
pubmed: 29486761
J Mol Diagn. 2016 Mar;18(2):299-315
pubmed: 26801070
Am J Clin Pathol. 2014 Jun;141(6):856-66
pubmed: 24838331
Nat Neurosci. 2021 Feb;24(2):176-185
pubmed: 33432195
Nat Biotechnol. 2020 Mar;38(3):314-319
pubmed: 31907404
N Engl J Med. 2014 Nov 20;371(21):2038
pubmed: 25409382
Biomol Detect Quantif. 2019 Mar 18;17:100087
pubmed: 30923679
Clin Chem. 2016 Nov;62(11):1492-1503
pubmed: 27624137
Sci Rep. 2017 Jan 03;7:39606
pubmed: 28045065
Chem Soc Rev. 2017 Apr 18;46(8):2038-2056
pubmed: 28393954
J Environ Chem Eng. 2020 Oct;8(5):104306
pubmed: 32834990
Appl Environ Microbiol. 2014 Dec;80(24):7583-91
pubmed: 25261520
Oncotarget. 2017 Sep 23;8(52):89978-89987
pubmed: 29163804
Cell. 2012 Oct 26;151(3):483-96
pubmed: 23101622
Mol Cells. 2018 Oct 31;41(10):881-888
pubmed: 30352490
N Engl J Med. 2017 Jul 13;377(2):111-121
pubmed: 28636844
Appl Environ Microbiol. 2014 Nov;80(21):6771-81
pubmed: 25172863
J Mol Diagn. 2015 Sep;17(5):505-14
pubmed: 26146130
Nat Rev Genet. 2005 May;6(5):389-402
pubmed: 15861210
Curr Opin Virol. 2011 Nov;1(5):413-8
pubmed: 22440844
Genet Med. 2021 Jan;23(1):123-130
pubmed: 32884133
JAMA. 2019 Jan 22;321(3):308
pubmed: 30667495
Genome Med. 2020 Apr 29;12(1):42
pubmed: 32349777
BMC Genomics. 2012 Jul 24;13:341
pubmed: 22827831
JAMA Oncol. 2019 May 9;:
pubmed: 31070691
Fetal Diagn Ther. 2020;47(3):228-236
pubmed: 31533106
BMC Bioinformatics. 2015 Jan 16;16:10
pubmed: 25592313
Int J Mol Med. 2020 Sep;46(3):957-964
pubmed: 32705153
Curr Opin Syst Biol. 2017 Feb;1:90-94
pubmed: 29226270
Nature. 2018 Jun;558(7711):540-546
pubmed: 29899452
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Hum Mol Genet. 2019 Oct 15;28(R2):R197-R206
pubmed: 31578549
Mitochondrion. 2020 Jan;50:88-93
pubmed: 31669622
Nat Biomed Eng. 2017;1:714-723
pubmed: 29805844
Molecules. 2018 Feb 03;23(2):
pubmed: 29401641
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Onco Targets Ther. 2019 Dec 27;12:11517-11530
pubmed: 31920340
Sci Rep. 2017 Aug 14;7(1):8106
pubmed: 28808243
JAMA. 2019 Jan 22;321(3):308-309
pubmed: 30667496
PLoS One. 2013 Jul 23;8(7):e70388
pubmed: 23894647
Science. 2013 Jul 5;341(6141):1237758
pubmed: 23828942
Science. 2015 Oct 2;350(6256):94-98
pubmed: 26430121