A shift in ontogenetic timing produced the unique sauropod skull.
Development
Dinosauria
Sauropodomorpha
evolution
paleontology
skull
Journal
Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
10
07
2020
accepted:
30
01
2021
pubmed:
13
2
2021
medline:
28
10
2021
entrez:
12
2
2021
Statut:
ppublish
Résumé
Sauropod dinosaurs include the largest terrestrial vertebrates that have ever lived. Virtually every part of the sauropod body is heavily modified in association with gigantic size and associated physiological alterations. Sauropod skulls are no exception: they feature elongated, telescoped facial regions connected to tilted neurocrania and reoriented jaw adductor muscles. Several of these cranial features have been suggested to be adaptations for feeding on the one hand and the result of paedomorphic transformation near the base of Sauropoda on the other. However, the scarcity of sauropodomorph ontogenetic series has impeded further investigation of these hypotheses. We re-evaluated the cranial material attributed to the early sauropodomorph Anchisaurus, which our phylogenetic analyses confirm to be closely related to sauropods. Digital assembly of μCT-scanned skulls of the two known specimens, a juvenile and an adult, permitted us to examine the detailed ontogeny of cranial elements. The skull anatomy of Anchisaurus is distinguished by a mosaic of ancestral saurischian and sauropod-like characters. Sauropod-like characters of the braincase and adductor chamber appear late in ontogeny, suggesting that these features first evolved by the developmental mechanism of terminal addition. Shape analyses and investigation of allometric evolution demonstrate that cranial characters that appear late in the ontogeny of sauropodomorphs closely related to sauropods are already present in the embryos and juveniles of sauropods, suggesting a predisplacement-type shift in developmental timing from the ancestral anchisaurian condition. We propose that this developmental shift relaxed prior constraints on skull morphology, allowing sauropods to explore a novel range of phenotypes and enabling specializations of the feeding apparatus. The shift in timing occurred in concert with the evolution of gigantism and physiological and locomotory innovations.
Banques de données
Dryad
['10.5061/dryad.931zcrjjk']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
819-831Informations de copyright
© 2021 The Authors. Evolution © 2021 The Society for the Study of Evolution.
Références
Adams, D. C., and E. Otárola-Castillo. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4:393-399.
Adams, D. C., and M. L. Collyer. 2018. Phylogenetic ANOVA: group-clade aggregation, biological challenges, and a refined permutation procedure. Evolution 72:1204-1215.
Alberch, P., S. J. Gould, G. F. Oster, and D. B. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296-317.
Apaldetti, C., R. N. Martinez, O. A. Alcober, and D. Pol. 2011. A new basal sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), northwestern Argentina. PLoS One 6:e26964.
Apaldetti, C., R. N. Martínez, I. A. Cerda, D. Pol, and O. Alcober. 2018. An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nat. Ecol. Evol. 2:1227.
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3:803-807.
Barrett, P. M., and A. M. Yates. 2005. New information on the palate and lower jaw of Massospondylus (Dinosauria: Sauropodomorpha). Palaeont. afri. 41:123-130.
Benson, R. B., N. E. Campione, M. T. Carrano, P. D. Mannion, C. Sullivan, P. Upchurch, and D. C. Evans. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12:e1001853.
Bhullar, B. A. S., J. Marugán-Lobón, F. Racimo, G. S. Bever, T. B. Rowe, M. A. Norell, and A. Abzhanov. 2012. Birds have paedomorphic dinosaur skulls. Nature 487:223-226.
Bhullar, B. A. S., M. Hanson, M. Fabbri, A. Pritchard, G. S. Bever, and E. Hoffman. 2016. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 56:389-403.
Brusatte, S. L. 2011. Calculating the tempo of morphological evolution: rates of discrete character change in a phylogenetic context. Pp. 53-74 in A. Elewa, ed. Computational paleontology. Springer, Berlin, Germany.
Button, D. J., and L. E. Zanno. 2019. Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr. Biol. 30:158-168.
Button, D. J., E. J. Rayfield, and P. M. Barrett. 2014. Cranial biomechanics underpins high sauropod diversity in resource-poor environments. Proc. R. Soc. B 281:20142114.
Button, D. J., P. M. Barrett, and E. J. Rayfield. 2016. Comparative cranial myology and biomechanics of Plateosaurus and Camarasaurus and evolution of the sauropod feeding apparatus. Palaeontology 59:887-913.
Button, D. J., P. M. Barrett, and E. J. Rayfield. 2017. Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology 43:435-462.
Cailliez, F. 1983. The analytical solution of the additive constant problem. Psychometrika 48:305-308.
Carballido, J. L., D. Pol, A. Otero, I. A. Cerda, L. Salgado, A. C. Garrido, J. Ramezani, N. R. Cúneo, and J. M. Krause. 2017. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B 284:20171219.
Cerda, I. A., A. Chinsamy, D. Pol, C. Apaldetti, A. Otero, J. E. Powell, and R. N. Martínez. 2017. Novel insight into the origin of the growth dynamics of sauropod dinosaurs. PLoS One 12:e0179707.
Chapelle, K. E., and J. N. Choiniere. 2018. A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha. PeerJ 6:e4224.
Chapelle, K. E., V. Fernandez, and J. N. Choiniere. 2020. Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages. Sci. Rep. 10:1-10.
Charrad, M., M. Ghazzali, V. Boiteau, and M. Niknafs. 2014. NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61:1-36.
Chiappe, L. M., L. Salgado, and R. A. Coria. 2001. Embryonic skulls of titanosaur sauropod dinosaurs. Science 293:2444-2446.
Clauss, M., and J. Hummel. 2005. The digestive performance of mammalian herbivores: why big may not be that much better. Mamm. Rev. 35:174-187.
Collyer, M. L., and D. C. Adams. 2019. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R package version 0.4. 0.
Cuff, A. R., and E. J. Rayfield. 2015. Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ 3:p.e1093.
Erickson, G. M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol. Evol. 20:677-684.
Espinoza, R. E., J. J. Wiens, and C. R. Tracy. 2004. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc. Natl. Acad. Sci. 101:16819-16824.
Fabbri, M., M. N. Koch, A. C. Pritchard, M. Hanson, E. Hoffman, G. S. Bever, A. M. Balanoff, Z. S. Morris, D. J. Field, J. Camacho et al. 2017. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1:1543-1550.
Fabbri, M., E. Tschopp, B. McPhee, S. Nesbitt, D. Pol, and M. Langer. 2020. Sauropodomorpha F. R. von Huene 1932. Pp. 1225-1234 in K. de Queiroz, P. D. Cantino, and J. A. Gauthier, eds. Phylonyms: a companion to the Phylocode. CRC Press, Boca Raton, FL.
Foth, C., and O. W. Rauhut. 2013. The good, the bad, and the ugly: the influence of skull reconstructions and intraspecific variability in studies of cranial morphometrics in theropods and basal saurischians. PLoS One 8:e72007.
Foth, C., B. P. Hedrick, and M. D. Ezcurra. 2016. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589.
Galton, P. M., A. M. Yates, and D. Kermack. 2007. Pantydraco n. gen. for Thecodontosaurus caducus Yates, 2003, a basal sauropodomorph dinosaur from the Upper Triassic or Lower Jurassic of South Wales. UK. Neues Jahrbuch Geol. Paläont. 243:119-125.
Geist, V. 1974. On the relationship of social evolution and ecology in ungulates. Am. Zool. 14:205-220.
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41:587-638.
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am. Nat. 105:113-136.
Goloboff, P. A., J. S. Farris, and K. C. Nixon. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774-786.
González, R., I. A. Cerda, L. S. Filippi, and L. Salgado. 2020. Early growth dynamics of titanosaur sauropods inferred from bone histology. Palaeog. Palaeoc. Palaeoec. 537:109404.
Grellet-Tinner, G., C. M. Sim, D. H. Kim, P. Trimby, A. Higa, S. L. An, H. S. Oh, T. J. Kim, and N. Kardjilov. 2011. Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion. Gond. Res. 20:621-629.
Griffin, C. T., M. R. Stocker, C. Colleary, C. M. Stefanic, E. J. Lessner, M. Riegler, K. Formoso, K. Koeller, and S. J. Nesbitt. 2020. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. https://doi.org/10.1111/brv.12666.
Hitchcock, E. 1865. A supplement to the ichnology of New England. Wright and Potter, Boston, MA.
Horner, J. R., A. de Ricqles, and K. Padian. 1999. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology 25:295-304.
Huene, F. V. 1932. Die fossile Reptile-Ordnung Saurischia, ihre Entwicklung und Geschichte. Monograph. Geol. Palaeontol. 4:1-361.
Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Res. 11:353-357.
Kundrát, M., R. A. Coria, T. W. Manning, D. Snitting, L. M. Chiappe, J. Nudds, and P. E. Ahlberg. 2020. Specialized craniofacial anatomy of a titanosaurian embryo from Argentina. Curr. Biol. 30:4263-4269.
Langer, M. C., M. D. Ezcurra, O. W. Rauhut, M. J. Benton, F. Knoll, B. W. McPhee, F. E. Novas, D. Pol, and S. L. Brusatte. 2017. Untangling the dinosaur family tree. Nature 551:E1-E3.
Lautenschlager, S. 2016. Reconstructing the past: methods and techniques for the digital restoration of fossils. R. Soc. Open Sci. 3:160342.
Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118:131-151.
Maddison, W. P. 2008. Mesquite: a modular system for evolutionary analysis. Evolution 62:1103-1118.
Marsh, O. C. 1885. Names of extinct reptiles. Am. J. Sci. 3:29-169.
Martinez, R. N., P. C. Sereno, O. A. Alcober, C. E. Colombi, P. R. Renne, I. P. Montañez, and B. S. Currie. 2011. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science 331:206-210.
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. J. Paleontol. 60:4-13.
McNamara, K. J., and J. A. Long. 2012. The role of heterochrony in dinosaur evolution. Pp. 761-754 in M. K. Brett-Surman, T. R. Holtz, and J. O. Farlow, eds. The complete dinosaur. Life of the past. Indiana Univ. Press, Bloomington, IN.
Nesbitt, S. J., N. D. Smith, R. B. Irmis, A. H. Turner, A. Downs, and M. A. Norell. 2009. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science 326:1530-1533.
Nesbitt, S. J., R. J. Butler, M. D. Ezcurra, P. M. Barrett, M. R. Stocker, K. D. Angielczyk, R. M. Smith, C. A. Sidor, G. Niedźwiedzki, A. G. Sennikov, et al. 2017. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544:484-487.
Norell, M. A., J. Wiemann, M. Fabbri, C. Yu, C. A. Marsicano, A. Moore-Nall, D. J. Varricchio, D. Pol, and D. K. Zelenitsky. 2020. The first dinosaur egg was soft. Nature 583:406-410.
Otero, A., A. R. Cuff, V. Allen, L. Sumner-Rooney, D. Pol, and J. R. Hutchinson. 2019. Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth. Sci. Rep. 9:1-10.
Owen-Smith, R. N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge Univ. Press, Cambridge, U.K.
Petermann, H., and M. Sander. 2013. Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils. J. Anat. 222:419-436.
Pinheiro, F. L., M. A. França, M. B. Lacerda, R. J. Butler, and C. L. Schultz. 2016. An exceptional fossil skull from South America and the origins of the archosauriform radiation. Sci. Rep. 6:22817.
Porro, L. B., E. J. Rayfield, and J. A. Clack. 2015. Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952. PLoS One 10:e0124731.
Prieto-Márquez, A., and M. A. Norell. 2011. Redescription of a nearly complete skull of Plateosaurus (Dinosauria: Sauropodomorpha) from the Late Triassic of Trossingen (Germany). Am. Mus. Novit. 3727:1-58.
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
Reisz, R. R., and H. D. Sues. 2000. Herbivory in late Paleozoic and Triassic terrestrial vertebrates. Pp. 9-41 in H.-D. Sues, ed. Evolution of herbivory in terrestrial vertebrates. Cambridge Univ. Press, Cambridge, U.K.
Reisz, R. R., D. Scott, H. D. Sues, D. C. Evans, and M. A. Raath. 2005. Embryos of an Early Jurassic prosauropod dinosaur and their evolutionary significance. Science 309:761-764.
Reisz, R. R., A. R. H. LeBlanc, H. C. Maddin, T. W. Dudgeon, D. Scott, T. Huang, J. Chen, C. Chen, and S. Zhong. 2020. Early Jurassic dinosaur fetal dental development and its significance for the evolution of sauropod dentition. Nat. Comm. 11:2240.
Rogers, K. C., and C. A. Forster. 2004. The skull of Rapetosaurus krausei (sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 24:121-144.
Rogers, K. C., M. Whitney, M. D'Emic, and B. Bagley. 2016. Precocity in a tiny titanosaur from the Cretaceous of Madagascar. Science 352:450-453.
Rohlf, F. J. 2016. TPSDig2, Version 2.26. Department of Ecology and Evolution, University of New York at Stony Brook, Stony Brook, NY.
Sander, P. M., and M. Clauss. 2008. Sauropod gigantism. Science 322:200-201.
Sander, P. M., A. Christian, M. Clauss, R. Fechner, C. T. Gee, E. M. Griebeler, H. C. Gunga, J. Hummel, H. Mallison, S. F. Perry, et al. 2011. Biology of the sauropod dinosaurs: the evolution of gigantism. Biol. Rev. 86:117-155.
Sander, P. M., and N. Klein. 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800-1802.
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:2137-2147.
Sereno, P. C., J. A. Wilson, L. M. Witmer, J. A. Whitlock, A. Maga, O. Ide, and T. A. Rowe. 2007. Structural extremes in a Cretaceous dinosaur. PLoS One 2:e1230.
Shedlock, A. M., and S. V. Edwards. 2009. Amniotes (amniota). Pp. 375-379 in S. B. Hedges and S. Kumar, eds. The timetree of life. Oxford Univ. Press, Oxford, U.K.
Tschopp, E. 2020. Paleontology: the smallest of the giants. Curr. Biol. 30:R1496-R1499.
Tschopp, E. D., J. Russo, and G. Dzemski. 2013. Retrodeformation as a test for the validity of phylogenetic characters: an example from diplodocid sauropod vertebrae. Palaeontol. Electron. 16:1-23.
Tschopp, E., O. Mateus, and R. B. Benson. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 3:e857.
Upchurch, P., P. M. Barrett, and P. Dodson. 2004. Sauropoda (259-322). Univ. of California Press, Berkeley, CA.
Whitlock, J. A., J. A. Wilson, and M. C. Lamanna. 2010. Description of a nearly complete juvenile skull of Diplodocus (Sauropoda: Diplodocoidea) from the Late Jurassic of North America. J. Vert. Paleontol. 30:442-457.
Wilson, J. A., and P. C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. J. Vert. Paleontol. 18:1-79.
Witzel, U., and H. Preuschoft. 2005. Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 283:391-401.
Woodruff, D. C., T. D. Carr, G. W. Storrs, K. Waskow, J. B. Scannella, K. K. Nordén, and J. P. Wilson. 2018. The smallest diplodocid skull reveals cranial ontogeny and growth-related dietary changes in the largest dinosaurs. Sci. Rep. 8:1-12.
Yates, A. M. 2004. Anchisaurus polyzelus (Hitchcock): the smalles known Sauropod Dinosaur and the evolution of gigantism among Sauropodomorph Dinosaurs. Peabody Museum of Natural History, New Haven, CT.
Yates, A. M. 2007. The first complete skull of the Triassic dinosaur Melanorosaurus Haughton (Sauropodomorpha: Anchisauria). Spec. Pap. Palaeontol. 77:9-55.
Yates, A. M. 2010. A revision of the problematic sauropodomorph dinosaurs from Manchester, Connecticut and the status of Anchisaurus Marsh. Palaeontology 53:739-752.
Young, M. T., E. J. Rayfield, C. M. Holliday, L. M. Witmer, D. J. Button, P. Upchurch, and P. M. Barrett. 2012. Cranial biomechanics of Diplodocus (Dinosauria, Sauropoda): testing hypotheses of feeding behaviour in an extinct megaherbivore. Nat. Sci. 99:637-643.
Zheng, Z. 1996. Cranial anatomy of Shunosaurus and Camarasaurus (Dinosauria: Sauropoda) and the phylogeny of the Sauropoda. PhD diss., Texas Tech University, Lubbock, TX.
Zelditch, M. L., D. L. Swiderski, and H. D. Sheets. 2012. Geometric morphometrics for biologists: a primer. Academic Press, Cambridge, MA.