Temperature reduces fish dispersal as larvae grow faster to their settlement size.

climate change early life traits pelagic larval duration productivity temperature gradients

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
06 2021
Historique:
received: 25 04 2020
accepted: 22 12 2020
pubmed: 29 1 2021
medline: 25 6 2021
entrez: 28 1 2021
Statut: ppublish

Résumé

As species struggle to cope with rising ocean temperatures, temperate marine assemblages are facing major reorganization. Many benthic species have a brief but critical period dispersing through the plankton, when they are particularly susceptible to variations in temperature. Impacts of rising temperatures can thus ripple through the population with community-wide consequences. However, responses are highly species-specific, making it difficult to discern assemblage-wide patterns in the life histories of different fish species. Here, we evaluate the responses to temperature in the early life histories of several fish species using otolith reconstructive techniques. We also assess the consequences of future warming scenarios to this assemblage. We sampled recent settlers of nine common species across a temperature gradient in the Mediterranean Sea and obtained environmental data for each individual. Using otolith microstructure, we measured early life traits including pelagic larval duration (PLD), growth rate, settlement size, hatching and settlement dates. We used a GLM framework to examine how environmental variables influenced early life-history parameters. We show that increasing temperature results in considerable reduction in the dispersal potential of temperate fish. We find a nearly universal, assemblage-wide decline in pelagic larval duration (PLD) of between 10% and 25%. This was because, with increasing temperature, larvae grew quicker to their settlement size. Settlement size itself was less affected by temperature and appears to be an ontogenetically fixed process. Given current estimates of ocean warming, there could be an assemblage-wide reduction in larval dispersal of up to 50 km across the Mediterranean, reducing connectivity and potentially isolating populations as waters warm.

Identifiants

pubmed: 33508875
doi: 10.1111/1365-2656.13435
doi:

Banques de données

Dryad
['10.5061/dryad.rbnzs7h9v']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1419-1432

Informations de copyright

© 2021 British Ecological Society.

Références

Acker, J. G., & Leptoukh, G. (2007). Online analysis enhances use of NASA Earth Science Data. Eos, 88(2), https://doi.org/10.1029/2007EO020003
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., & Gomis, D. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45(9-10), 2775-2802. https://doi.org/10.1007/s00382-015-2507-3
Álvarez-Noriega, M., Burgess, S. C., Byers, J. E., Pringle, J. M., Wares, J. P., & Marshall, D. J. (2020). Global biogeography of marine dispersal potential. Nature Ecology and Evolution, 4(9), 1196-1203. https://doi.org/10.1038/s41559-020-1238-y
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., & De Clerck, O. (2018). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284. https://doi.org/10.1111/geb.12693
Barton, K. (2018). MuMIn: Multi-Model Inference. R package version 1.42.1. Retrieved from https://cran.r-project.org/package=MuMIn
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., Milligan, A. J., & Siegel, D. A., & Brown, M. B. (2016). Revaluating ocean warming impacts on global phytoplankton. Nature Climate Change, 6(3), 323-330. https://doi.org/10.1038/nclimate2838
Bergenius, M. A. J., McCormick, M. I., Meekan, M. G., & Robertson, D. R. (2005). Environmental influences on larval duration, growth and magnitude of settlement of a coral reef fish. Marine Biology, 147(2), 291-300. https://doi.org/10.1007/s00227-005-1575-z
Caie, P., & Shima, J. S. (2019). Patterns of selective predation change with ontogeny but not density in a marine fish. Oecologia, 189(1), 123-132. https://doi.org/10.1007/s00442-018-4303-3
Cowen, R. K., & Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science, 1(1), 443-466. https://doi.org/10.1146/annurev.marine.010908.163757
D'Aloia, C. C., Bogdanowicz, S. M., Francis, R. K., Majoris, J. E., Harrison, R. G., & Buston, P. M. (2015). Patterns, causes, and consequences of marine larval dispersal. Proceedings of the National Academy of Sciences of the United States of America, 112(45), 13940-13945. https://doi.org/10.1073/pnas.1513754112
Di Biagio, V., Cossarini, G., Salon, S., Lazzari, P., Querin, S., Sannino, G., & Solidoro, C. (2019). Temporal scales of variability in the Mediterranean Sea ecosystem: Insight from a coupled model. Journal of Marine Systems, 197, 103176. https://doi.org/10.1016/j.jmarsys.2019.05.002
Di Franco, A., Gillanders, B. M., de Benedetto, G., Pennetta, A., de Leo, G. A., & Guidetti, P. (2012). Dispersal patterns of coastal fish: Implications for designing networks of marine protected areas. PLoS ONE, 7(2), https://doi.org/10.1371/journal.pone.0031681
Diffenbaugh, N. S., & Giorgi, F. (2012). Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 114(3-4), 813-822. https://doi.org/10.1007/s10584-012-0570-x
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Fosaa, A. M., Gould, W. A., Hermanutz, L., Hofgaard, A., Jónsdóttir, I. S., Jorgenson, J. C., Lévesque, E., Magnusson, B., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Rixen, C., Tweedie, C. E. & Walker, M. D. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America, 112(30), E4156. https://doi.org/10.1073/pnas.1511529112
Faillettaz, R., Paris, C. B., & Irisson, J. O. (2018). Larval fish swimming behavior alters dispersal patterns from marine protected areas in the North-Western Mediterranean Sea. Frontiers in Marine Science, 5(Mar), 1-12. https://doi.org/10.3389/fmars.2018.00097
Froese, R., & Pauly, D. (2019). FishBase. World Wide Web electronic publication. https://www.fishbase.org
Gagliano, M., McCormick, M. I., & Meekan, M. G. (2007). Survival against the odds: Ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 274(1618), 1575-1582.
García-Rubies, A., & Macpherson, E. (1995). Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Marine Biology, 124(1), 35-42. https://doi.org/10.1007/BF00349144
Garnier, S. (2018). viridis: Default Color Maps from “matplotlib”. Retrieved from https://cran.r-project.org/package=viridis
Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2-3), 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Grorud-Colvert, K., & Sponaugle, S. (2011). Variability in water temperature affects trait-mediated survival of a newly settled coral reef fish. Oecologia, 165(3), 675-686. https://doi.org/10.1007/s00442-010-1748-4
Grummer, J. A., Beheregaray, L. B., Bernatchez, L., Hand, B. K., Luikart, G., Narum, S. R., & Taylor, E. B. (2019). Aquatic landscape genomics and environmental effects on genetic variation. Trends in Ecology & Evolution, 34(7), 641-654. https://doi.org/10.1016/j.tree.2019.02.013
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastian, K., López, S. L., Borrueco, B. F., Beltran, J. P., Troupin, C., Tomás, M. T., & Heslop, E. (2016). Operational SOCIB forecasting system and multi-platform validation in the Western Mediterranean. Journal of Operational Oceanography, 9, 9231.
Kendall, M. S., Poti, M., & Karnauskas, K. B. (2016). Climate change and larval transport in the ocean: Fractional effects from physical and physiological factors. Global Change Biology, 22(4), 1532-1547. https://doi.org/10.1111/gcb.13159
Kinlan, B. P., Gaines, S. D., & Lester, S. E. (2005). Propagule dispersal and the scales of marine community process. Diversity and Distributions, 11(2), 139-148. https://doi.org/10.1111/j.1366-9516.2005.00158.x
Kleypas, J. A., Thompson, D. M., Castruccio, F. S., Curchitser, E. N., Pinsky, M., & Watson, J. R. (2016). Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Global Change Biology, 22(11), 3539-3549. https://doi.org/10.1111/gcb.13347
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Laurel, B. J., Basilio, A. J., Danley, C., Ryer, C. H., & Spencer, M. (2015). Substrate preference and delayed settlement in northern rock sole larvae Lepidopsetta polyxystra. Marine Ecology Progress Series, 519, 183-193. https://doi.org/10.3354/meps11090
Leis, J. M. (2006). Are larvae of demersal fishes plankton or nekton? Advances in Marine Biology, 51, 57-141. https://doi.org/10.1016/S0065-2881(06)51002-8
Luiz, O. J., Allen, A. P., Robertson, D. R., Floeter, S. R., Kulbicki, M., Vigliola, L., Becheler, R., & Madin, J. S. (2013). Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16498-16502. https://doi.org/10.1073/pnas.1304074110
Macpherson, E., Biagi, F., Francour, P., García-Rubies, A., Harmelin, J., Harmelin-Vivien, M., Jouvenel, J. Y., Planes, S., Vigliola, L., & Tunesi, L. (1997). Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Marine Ecology Progress Series, 160, 135-147. https://doi.org/10.3354/meps160135
McLeod, I. M., McCormick, M. I., Munday, P. L., Clark, T. D., Wenger, A. S., Brooker, R. M., Takahashi, M., & Jones, G. P. (2015). Latitudinal variation in larval development of coral reef fishes: Implications of a warming ocean. Marine Ecology Progress Series, 521, 129-141. https://doi.org/10.3354/meps11136
McLeod, I. M., Rummer, J. L., Clark, T. D., Jones, G. P., McCormick, M. I., Wenger, A. S., & Munday, P. L. (2013). Climate change and the performance of larval coral reef fishes: The interaction between temperature and food availability. Conservation Physiology, 1(1), 1-12. https://doi.org/10.1093/conphys/cot024
Meekan, M. G., Vigliola, L., Hansen, A., Doherty, P. J., Halford, A., & Carleton, J. H. (2006). Bigger is better: Size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Marine Ecology Progress Series, 317(Anderson 1988), 237-244. https://doi.org/10.3354/meps317237
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213-241. https://doi.org/10.1007/s10584-011-0156-z
Moullec, F., Barrier, N., Drira, S., Guilhaumon, F., Marsaleix, P., Somot, S., Ulses, C., Velez, L., & Shin, Y.-J. (2019). An end-to-end model reveals losers and winners in a warming Mediterranean Sea. Frontiers in Marine Science, 6(Jun), 1-19. https://doi.org/10.3389/fmars.2019.00345
Munday, P. L., Leis, J. M., Lough, J. M., Paris, C. B., Kingsford, M. J., Berumen, M. L., & Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral Reefs, 28(2), 379-395. https://doi.org/10.1007/s00338-008-0461-9
Occhipinti-Ambrogi, A. (2007). Global change and marine communities: Alien species and climate change. Marine Pollution Bulletin, 55(7-9), 342-352. https://doi.org/10.1016/j.marpolbul.2006.11.014
O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E., Kinlan, B. P., & Weiss, J. M. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1266-1271. https://doi.org/10.1073/pnas.0603422104
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., & Dubash, N. K. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
Pannella, G. (1971). Fish otoliths: Daily growth layers and periodical patterns. Science, 173(4002), 1124-1127.
Pascual, M., Rives, B., Schunter, C., & Macpherson, E. (2017). Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE, 12(5), 1-20. https://doi.org/10.1371/journal.pone.0176419
Paxian, A., Hertig, E., Seubert, S., Vogt, G., Jacobeit, J., & Paeth, H. (2015). Present-day and future mediterranean precipitation extremes assessed by different statistical approaches. Climate Dynamics, 44(3-4), 845-860. https://doi.org/10.1007/s00382-014-2428-6
Pickett, S. T. A. (1989). Space-for-time substitution as an alternative to long-term studies. In G. E. Likens (Ed.), Long-term studies in ecology (pp. 110-135). Springer. https://doi.org/10.1007/978-1-4615-7358-6_5
Prado, P., Tomas, F., Alcoverro, T., & Romero, J. (2007). Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Marine Ecology Progress Series, 340, 63-71. https://doi.org/10.3354/meps340063
R Core Team. (2018). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/
Raventos, N., & Macpherson, E. (2001). Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Marine Biology, 138(6), 1115-1120. https://doi.org/10.1007/s002270000535
Raventos, N., Torrado, H., Rohan, A., Alcoverro, T., & Macpherson, E. (2021). Data from: Temperature reduces fish dispersal as larvae grow faster to their settlement size. Dryad Digital Repository, https://doi.org/10.5061/dryad.rbnzs7h9v
Robitzch, V. S. N., Lozano-Cortés, D., Kandler, N. M., Salas, E., & Berumen, M. L. (2016). Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea. Marine Pollution Bulletin, 105(2), 566-574. https://doi.org/10.1016/j.marpolbul.2015.11.045
Rodgers, G. M., Downing, B., & Morrell, L. J. (2015). Prey body size mediates the predation risk associated with being ‘odd’. Behavioral Ecology, 26(1), 242-246. https://doi.org/10.1093/beheco/aru185
Rossi, V., Ser-Giacomi, E., Lõpez, C., & Hernández-García, E. (2014). Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophysical Research Letters, 41(8), 2883-2891. https://doi.org/10.1002/2014GL059540
Sala, E., Ballesteros, E., Dendrinos, P., Di Franco, A., Ferretti, F., Foley, D., Fraschetti, S., Friedlander, A., Garrabou, J., Güçlüsoy, H., Guidetti, P., Halpern, B. S., Hereu, B., Karamanlidis, A. A., Kizilkaya, Z., Macpherson, E., Mangialajo, L., Mariani, S., Micheli, F., … Zabala, M. (2012). The structure of mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0032742
Schunter, C., Carreras-Carbonell, J., Macpherson, E., Tintoré, J., Vidal-vijande, E., Pascual, A., Guidetti, P., & Pascual, M. (2011). Matching genetics with oceanography: Directional gene flow in a Mediterranean fish species. Molecular Ecology, 20(24), 5167-5181. https://doi.org/10.1111/j.1365-294X.2011.05355.x
Searcy, S. P., & Sponaugle, S. (2001). Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology, 82(9), 2452-2470. https://doi.org/10.1890/0012-9658(2001)082[2452:SMDTLJ]2.0.CO;2
Selkoe, K. A., & Toonen, R. J. (2011). Marine connectivity: A new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series, 436, 291-305. https://doi.org/10.3354/meps09238
Shanks, A. L. (2009). Pelagic larval duration and dispersal distance revisited. The Biological Bulletin, 216(3), 373-385. https://doi.org/10.1086/bblv216n3p373
Shima, J. S., Osenberg, C. W., Alonzo, S. H., Noonburg, E. G., Mitterwallner, P., & Swearer, S. E. (2020). Reproductive phenology across the lunar cycle: Parental decisions, offspring responses, and consequences for reef fish. Ecology, e03086. https://doi.org/10.1002/ecy.3086
Shima, J. S., & Swearer, S. E. (2016). Evidence and population consequences of shared larval dispersal histories in a marine fish. Ecology, 97(1), 25-31. https://doi.org/10.1890/14-2298.1
Sponaugle, S., Grorud-Colvert, K., & Pinkard, D. (2006). Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Marine Ecology Progress Series, 308, 1-15. https://doi.org/10.3354/meps308001
The GIMP team. (n.d.). GNU Image Manipulation Program (GIMP). Retrieved from www.gimp.org
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., Ruiz, S., Martínez-Ledesma, M., Torner, M., Cusí, S., Diedrich, A., Balaguer, P., Gómez-Pujol, L., Álvarez-Ellacuria, A., Gómara, S., Sebastian, K., Lora, S., Beltrán, J. P., Renault, L., … Manriquez, M. (2013). SOCIB: The Balearic Islands Coastal Ocean Observing and forecasting system responding to science, technology and society needs. Marine Technology Society Journal, 47(1), 101-117. https://doi.org/10.4031/MTSJ.47.1.10
Tonani, M., Pinardi, N., Fratianni, C., Pistoia, J., Dobricic, S., Pensieri, S., de Alfonso, M., & Nittis, K. (2009). Mediterranean forecasting system: Forecast and analysis assessment through skill scores. Ocean Science, 5(4), 649-660. https://doi.org/10.5194/os-5-649-2009
Wernberg, T., Smale, D. A., & Thomsen, M. S. (2012). A decade of climate change experiments on marine organisms: Procedures, patterns and problems. Global Change Biology, 18(5), 1491-1498. https://doi.org/10.1111/j.1365-2486.2012.02656.x
White, C., Selkoe, K. A., Watson, J., Siegel, D. A., Zacherl, D. C., & Toonen, R. J. (2010). Ocean currents help explain population genetic structure. Proceedings of the Royal Society B: Biological Sciences, 277(1688), 1685-1694. https://doi.org/10.1098/rspb.2009.2214
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Retrieved from ggplot2.tidyverse.org
Wilson, D. T., & McCormick, M. I. (1997). Spatial and temporal validation of settlement-marks in the otoliths of tropical reef fishes. Marine Ecology Progress Series, 153(1-3), 259-271. https://doi.org/10.3354/meps153259

Auteurs

Nuria Raventos (N)

Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Girona, Spain.

Héctor Torrado (H)

Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Girona, Spain.
Department of Genetics, Microbiology and Statistics and IRBIO, University of Barcelona, Barcelona, Spain.

Rohan Arthur (R)

Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Girona, Spain.
Nature Conservation Foundation, Mysore, India.

Teresa Alcoverro (T)

Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Girona, Spain.

Enrique Macpherson (E)

Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Girona, Spain.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH