Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
22 01 2021
Historique:
received: 17 08 2020
accepted: 10 12 2020
entrez: 23 1 2021
pubmed: 24 1 2021
medline: 29 6 2021
Statut: epublish

Résumé

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.

Identifiants

pubmed: 33483589
doi: 10.1038/s42003-020-01623-8
pii: 10.1038/s42003-020-01623-8
pmc: PMC7822920
doi:

Substances chimiques

Receptors, Odorant 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

104

Commentaires et corrections

Type : ErratumIn

Références

Parra, J. R. P. biological control in Brazil: an overview. Sci. Agric. 71, 420–429 (2014).
doi: 10.1590/0103-9016-2014-0167
Parra, J. R. P. & Coelho, A. Applied biological control in Brazil: from laboratory assays to field application. J. Insect Sci. 19, 1–6 (2019).
Dicke, M. Behavioural and community ecology of plants that cry for help. Plant Cell Env. 32, 654–666 (2009).
doi: 10.1111/j.1365-3040.2008.01913.x
Poelman, E. H. et al. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biol. 10, e1001435 (2012).
pubmed: 23209379 pmcid: 3507920 doi: 10.1371/journal.pbio.1001435
Gauthier, J., Drezen, J. M. & Herniou, E. A. The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps. Parasitology 145, 713–723 (2018).
pubmed: 28534452 doi: 10.1017/S0031182017000725
Bézier, A. et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926–930 (2009).
pubmed: 19213916 doi: 10.1126/science.1166788
Thézé, J., Bézier, A., Periquet, G., Drezen, J. M. & Herniou, E. A. Paleozoic origin of insect large dsDNA viruses. Proc. Natl Acad. Sci. USA 108, 15931–15935 (2011).
pubmed: 21911395 pmcid: 3179036 doi: 10.1073/pnas.1105580108
Drezen, J.-M., Herniou, E. A. & Bézier, A. in Parasitoid Viruses Symbionts and Pathogens (eds Beckage, N. E. & Drezen, J.-M.) 15–31 (Elsevier, San Diego, 2012).
Burke, G. R. & Strand, M. R. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus. J. Virol. 86, 3293–3306 (2012).
pubmed: 22238295 pmcid: 3302316 doi: 10.1128/JVI.06434-11
Burke, G. R., Thomas, S. A., Eum, J. H. & Strand, M. R. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog. 9, e1003348 (2013).
pubmed: 23671417 pmcid: 3649998 doi: 10.1371/journal.ppat.1003348
Beckage, N. E., Tan, F., Schleifer, K. W., Lane, R. D. & Cherubin, L. L. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 26, 165–195 (1994).
doi: 10.1002/arch.940260209
Strand, M. R. in Parasitoid Viruses Symbionts and Pathogens (eds Beckage, N. E. & Drezen, J.-M.) 149–161 (Elsevier, San Diego, 2012).
Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLoS Genet. 6, e1001191 (2010).
pubmed: 21124940 pmcid: 2987831 doi: 10.1371/journal.pgen.1001191
Murphy, N., Banks, J. C., Whitfield, J. B. & Austin, A. D. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol. Phylogenet. Evol. 47, 378–395 (2008).
pubmed: 18325792 doi: 10.1016/j.ympev.2008.01.022
Belle, E. et al. Visualization of polydnavirus sequences in a parasitoid wasp chromosome. J. Virol. 76, 5793–5796 (2002).
pubmed: 11992007 pmcid: 137038 doi: 10.1128/JVI.76.11.5793-5796.2002
Gundersen-Rindal, D., Dupuy, C., Huguet, E. & Drezen, J.-M. Parasitoid polydnaviruses: evolution, pathology and applications. Biocont. Sci. Technol. 23, 1–61 (2013).
doi: 10.1080/09583157.2012.731497
Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Ann. Rev. Entomol. 64, 227–242 (2019).
doi: 10.1146/annurev-ento-020117-043322
Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930 (2012).
pubmed: 22952454 pmcid: 3431598 doi: 10.1371/journal.pgen.1002930
Wang, H. et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 9, 4820 (2018).
pubmed: 30446639 pmcid: 6240031 doi: 10.1038/s41467-018-07226-6
Bézier, A. et al. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos. Trans. R. Soc. B 368, 0047 (2013).
doi: 10.1098/rstb.2013.0047
Desjardins, C. A. et al. Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps. Genome Biol. 9, R183 (2008).
pubmed: 19116010 pmcid: 2646287 doi: 10.1186/gb-2008-9-12-r183
Bézier, A. et al. The genome of the nucleopolyhedrosis-causing virus from Tipula oleracea sheds new light on the Nudiviridae family. J. Virol. 89, 3008–3025 (2015).
pubmed: 25540386 doi: 10.1128/JVI.02884-14
Harrison, R. L. et al. ICTV virus taxonomy profile: nudiviridae. J. Gen. Virol. 101, 3–4 (2020).
pubmed: 31935180 pmcid: 7414434 doi: 10.1099/jgv.0.001381
Burke, G. R., Walden, K. K., Whitfield, J. B., Robertson, H. M. & Strand, M. R. Widespread genome reorganization of an obligate virus mutualist. PLoS Genet. 10, e1004660 (2014).
pubmed: 25232843 pmcid: 4169385 doi: 10.1371/journal.pgen.1004660
Burke, G. R., Walden, K. K. O., Whitfield, J. B., Robertson, H. M. & Strand, M. R. Whole genome sequence of the parasitoid wasp Microplitis demolitor that harbors an endogenous virus mutualist. G3 (Bethesda) 8, 2875–2880 (2018).
doi: 10.1534/g3.118.200308
Sugiura, N. et al. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 23, 1520–1530 (2013).
pubmed: 24052236 doi: 10.1093/glycob/cwt082
Wyder, S., Blank, F. & Lanzrein, B. Fate of polydnavirus DNA of the egg-larval parasitoid Chelonus inanitus in the host Spodoptera littoralis. J. Insect Physiol. 49, 491–500 (2003).
pubmed: 12770628 doi: 10.1016/S0022-1910(03)00056-8
Beck, M. H., Inman, R. B. & Strand, M. R. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions. Virology 359, 179–189 (2007).
pubmed: 17034828 doi: 10.1016/j.virol.2006.09.002
Herniou, E. A. et al. When parasitc wasps hijacked viruses: genomic and functionnal evolution of polydnaviruses. Philos. Transac. R. Soc. B 368, 1–13 (2013).
Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).
pubmed: 23875801 pmcid: 4426292 doi: 10.1146/annurev-genom-091212-153455
Louis, F. et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J. Virol. 87, 9649–9660 (2013).
pubmed: 23804644 pmcid: 3754133 doi: 10.1128/JVI.00886-13
Drezen, J. M., Chevignon, G., Louis, F. & Huguet, E. Origin and evolution of symbiotic viruses associated with parasitoid wasps. Cur. Opin. Insect Sci. 6, 35–43 (2014).
doi: 10.1016/j.cois.2014.09.008
Burke, G. R., Simmonds, T. J., Thomas, S. A. & Strand, M. R. Microplitis demolitor bracovirus proviral loci and clustered replication genes exhibit distinct DNA amplification patterns during replication. J. Virol. 89, 9511–9523 (2015).
pubmed: 26157119 pmcid: 4542368 doi: 10.1128/JVI.01388-15
Francino, M. P. An adaptive radiation model for the origin of new gene functions. Nat. Genet. 37, 573–577 (2005).
pubmed: 15920518 doi: 10.1038/ng1579
Gauthier, J. et al. Genetic footprints of adaptive divergence in the bracovirus of Cotesia sesamiae identified by targeted resequencing. Mol. Ecol. 27, 2109–2123 (2018).
pubmed: 29603484 doi: 10.1111/mec.14574
Pasquier-Barre, F. et al. Polydnavirus replication: the EP1 segment of the parasitoid wasp Cotesia congregata is amplified within a larger precursor molecule. J. Gen. Virol. 83, 2035–2045 (2002).
pubmed: 12124468 doi: 10.1099/0022-1317-83-8-2035
Shi, M. et al. The genomes of two parasitic wasps that parasitize the diamondback moth. BMC Genomics 20, 893 (2019).
pubmed: 31752718 pmcid: 6873472 doi: 10.1186/s12864-019-6266-0
Bichang’a, G. et al. Alpha-amylase mediates host acceptance in the Braconid parasitoid Cotesia flavipes. J. Chem. Ecol. 44, 1030–1039 (2018).
pubmed: 30084041 doi: 10.1007/s10886-018-1002-9
Kumar, P., Pandit, S. S., Steppuhn, A. & Baldwin, I. T. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl Acad. Sci. USA 111, 1245–1252 (2014).
pubmed: 24379363 doi: 10.1073/pnas.1314848111
Pentzold, S. et al. Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations. Insect Biochem. Mol. Biol. 66, 119–128 (2015).
pubmed: 26483288 doi: 10.1016/j.ibmb.2015.10.004
Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14, 17–24 (2016).
pubmed: 27436642 doi: 10.1016/j.cois.2015.12.004
Masson, F., Zaidman-Remy, A. & Heddi, A. Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Phil. Trans. Royal Soc. B 371, 20150298 (2016).
Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2, 1–12 (2001).
doi: 10.1186/gb-2001-2-12-research0054
Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).
pubmed: 21841803 pmcid: 3717454 doi: 10.1038/nature10341
Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).
pubmed: 23334415 doi: 10.1038/nature11832
Legeai, F. et al. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biol. 18, 89 (2020).
Pichon, A. et al. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 1, e1501150 (2015).
pubmed: 26702449 pmcid: 4681339 doi: 10.1126/sciadv.1501150
Drezen, J. M. et al. Endogenous viruses of parasitic wasps: variations on a common theme. Curr. Opin. Virol. 25, 41–48 (2017).
pubmed: 28728099 doi: 10.1016/j.coviro.2017.07.002
Leobold, M. et al. The Domestication of a large DNA virus by the wasp Venturia canescens involves targeted genome reduction through pseudogenization. Genome Biol. Evol. 10, 1745–1764 (2018).
pubmed: 29931159 pmcid: 6054256 doi: 10.1093/gbe/evy127
Burke, G. R., Simmonds, T. J., Sharanowski, B. J. & Geib, S. M. Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture. Mol. Biol. Evol. 35, 2463–2474 (2018).
pubmed: 30053110 doi: 10.1093/molbev/msy148
Di Giovanni, D. et al. A behavior-manipulating virus relative as a source of adaptive genes for Drosophila parasitoids. Mol. Biol. Evol. 37, 2791–2807 (2020).
Gitau, C. W., Gundersen-Rindal, D., Pedroni, M., Mbugi, P. J. & Dupas, S. Differential expression of the CrV1 haemocyte inactivation-associated polydnavirus gene in the African maize stem borer Busseola fusca (Fuller) parasitized by two biotypes of the endoparasitoid Cotesia sesamiae (Cameron). J. Insect Physiol. 53, 676–684 (2007).
pubmed: 17570392 doi: 10.1016/j.jinsphys.2007.04.008
Veiga, A. C. P., Vacari, A. M., Volpe, H. X. L., de Laurentis, V. L. & De Bortoli, S. A. Quality control of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) from different Brazilian bio-factories. Biocont. Sci. Technol. 23, 665–673 (2013).
doi: 10.1080/09583157.2013.790932
Geervliet, J. B. F., Vet, L. E. M. & Dicke, M. Volatiles from damaged plants as major cues in long‐range host‐searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. et. Applicata 73, 289–297 (1994).
doi: 10.1111/j.1570-7458.1994.tb01866.x
Smid, H. M. et al. Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc. Biol. Sci. 274, 1539–1546 (2007).
pubmed: 17439855 pmcid: 2176164
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
pubmed: 28763055 pmcid: 5538240 doi: 10.1038/sdata.2017.93
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
pubmed: 16056220 pmcid: 1464427 doi: 10.1038/nature03959
Aury, J. M. et al. High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies. BMC Genomics 9, 603 (2008).
pubmed: 19087275 pmcid: 2625371 doi: 10.1186/1471-2164-9-603
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
pubmed: 23587118 pmcid: 3626529 doi: 10.1186/2047-217X-1-18
Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife 3, e03318 (2014).
pubmed: 25517076 pmcid: 4381813 doi: 10.7554/eLife.03318
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Baudry, L. et al. instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biol. 21, 148 (2020).
pubmed: 32552806 pmcid: 7386250 doi: 10.1186/s13059-020-02041-z
Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).
pubmed: 29949969 pmcid: 6022658 doi: 10.1093/bioinformatics/bty266
Waterhouse, R. M. et al. BUSCO Applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
pubmed: 29220515 doi: 10.1093/molbev/msx319
Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).
pubmed: 21304975 pmcid: 3031573 doi: 10.1371/journal.pone.0016526
Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
doi: 10.1186/1471-2105-5-59
Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
pubmed: 18025269 pmcid: 2134774 doi: 10.1101/gr.6743907
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).
doi: 10.1186/1471-2105-10-421
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 24451626 pmcid: 3998142 doi: 10.1093/bioinformatics/btu031
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
pubmed: 16081474 doi: 10.1093/bioinformatics/bti610
Dunn, N. A. et al. Apollo: Democratizing genome annotation. PLoS Comput. Biol. 15, e1006790 (2019).
pubmed: 30726205 pmcid: 6380598 doi: 10.1371/journal.pcbi.1006790
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007 doi: 10.1038/nmeth.3176
Kumar, S., Jones, M., Koutsovoulos, G., Clarke, M. & Blaxter, M. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Front. Genet. 4, 237 (2013).
pubmed: 24348509 pmcid: 3843372 doi: 10.3389/fgene.2013.00237
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
pubmed: 26243257 pmcid: 4531804 doi: 10.1186/s13059-015-0721-2
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
pubmed: 12136088 pmcid: 135756 doi: 10.1093/nar/gkf436
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).
pubmed: 14530136 doi: 10.1080/10635150390235520
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
pubmed: 22847109 pmcid: 4594756 doi: 10.1038/nmeth.2109
Zhou, X. et al. Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biol. Evol. 7, 2407–2416 (2015).
pubmed: 26272716 pmcid: 4558866 doi: 10.1093/gbe/evv149
Robertson, H. M., Gadau, J. & Wanner, K. W. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol. Biol. 19, 121–136 (2010).
pubmed: 20167023 doi: 10.1111/j.1365-2583.2009.00979.x
Robertson, H. M. & Wanner, K. W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395–1403 (2006).
pubmed: 17065611 pmcid: 1626641 doi: 10.1101/gr.5057506
Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).
pubmed: 11108472 doi: 10.1089/106652700750050871
Stolzer, M. et al. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28, i409–i415 (2012).
pubmed: 22962460 pmcid: 3436813 doi: 10.1093/bioinformatics/bts386
Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. MACSE: Multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).
pubmed: 21949676 pmcid: 3174933 doi: 10.1371/journal.pone.0022594
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113 doi: 10.1093/molbev/msm088
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844 doi: 10.1186/gb-2013-14-4-r36
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
pubmed: 23558742 pmcid: 3664803 doi: 10.1093/nar/gkt214
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
pubmed: 20196867 pmcid: 2864565 doi: 10.1186/gb-2010-11-3-r25
Lund, S. P., Nettleton, D., McCarthy, D. J. & Smyth, G. K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol. 11, 23104842 (2012).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Gauthier, J. Custom scripts for Cotesia genomes analyses. Zenodo https://doi.org/10.5281/zenodo.4116412 (2020).

Auteurs

Jérémy Gauthier (J)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
Geneva Natural History Museum, 1208, Geneva, Switzerland.

Hélène Boulain (H)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

Joke J F A van Vugt (JJFA)

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.

Lyam Baudry (L)

Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015, France.
Sorbonne Université, Collège Doctoral, 75005, Paris, France.

Emma Persyn (E)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Jean-Marc Aury (JM)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.

Benjamin Noel (B)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.

Anthony Bretaudeau (A)

IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France.
Univ Rennes, Inria, CNRS, IRISA, 35000, Rennes, France.

Fabrice Legeai (F)

IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France.
Univ Rennes, Inria, CNRS, IRISA, 35000, Rennes, France.

Sven Warris (S)

Applied Bioinformatics, Wageningen University & Research, Wageningen, The Netherlands.

Mohamed A Chebbi (MA)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Géraldine Dubreuil (G)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Bernard Duvic (B)

Université Montpellier, INRAE, DGIMI, 34095, Montpellier, France.

Natacha Kremer (N)

Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, 43 bd du 11 novembre 1918, bat. G. Mendel, 69622, Villeurbanne Cedex, France.

Philippe Gayral (P)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Karine Musset (K)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Thibaut Josse (T)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Diane Bigot (D)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Christophe Bressac (C)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Sébastien Moreau (S)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Georges Periquet (G)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Myriam Harry (M)

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.

Nicolas Montagné (N)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Isabelle Boulogne (I)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Mahnaz Sabeti-Azad (M)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Martine Maïbèche (M)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Thomas Chertemps (T)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Frédérique Hilliou (F)

Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia-Antipolis, France.

David Siaussat (D)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

Joëlle Amselem (J)

Université Paris-Saclay, INRAE, URGI, 78026, Versailles, France.

Isabelle Luyten (I)

Université Paris-Saclay, INRAE, URGI, 78026, Versailles, France.

Claire Capdevielle-Dulac (C)

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.

Karine Labadie (K)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.

Bruna Laís Merlin (BL)

Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.

Valérie Barbe (V)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.

Jetske G de Boer (JG)

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
Evolutionary Genetics, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Martial Marbouty (M)

Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015, France.

Fernando Luis Cônsoli (FL)

Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.

Stéphane Dupas (S)

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.

Aurélie Hua-Van (A)

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.

Gaelle Le Goff (G)

Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia-Antipolis, France.

Annie Bézier (A)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Emmanuelle Jacquin-Joly (E)

Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005, Paris, France.

James B Whitfield (JB)

Department of Entomology, 320 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana, IL, 61801, USA.

Louise E M Vet (LEM)

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.

Hans M Smid (HM)

Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.

Laure Kaiser (L)

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.

Romain Koszul (R)

Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015, France.

Elisabeth Huguet (E)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Elisabeth A Herniou (EA)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.

Jean-Michel Drezen (JM)

Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France. drezen@univ-tours.fr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH