Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
22 01 2021
22 01 2021
Historique:
received:
17
08
2020
accepted:
10
12
2020
entrez:
23
1
2021
pubmed:
24
1
2021
medline:
29
6
2021
Statut:
epublish
Résumé
Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.
Identifiants
pubmed: 33483589
doi: 10.1038/s42003-020-01623-8
pii: 10.1038/s42003-020-01623-8
pmc: PMC7822920
doi:
Substances chimiques
Receptors, Odorant
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
104Commentaires et corrections
Type : ErratumIn
Références
Parra, J. R. P. biological control in Brazil: an overview. Sci. Agric. 71, 420–429 (2014).
doi: 10.1590/0103-9016-2014-0167
Parra, J. R. P. & Coelho, A. Applied biological control in Brazil: from laboratory assays to field application. J. Insect Sci. 19, 1–6 (2019).
Dicke, M. Behavioural and community ecology of plants that cry for help. Plant Cell Env. 32, 654–666 (2009).
doi: 10.1111/j.1365-3040.2008.01913.x
Poelman, E. H. et al. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biol. 10, e1001435 (2012).
pubmed: 23209379
pmcid: 3507920
doi: 10.1371/journal.pbio.1001435
Gauthier, J., Drezen, J. M. & Herniou, E. A. The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps. Parasitology 145, 713–723 (2018).
pubmed: 28534452
doi: 10.1017/S0031182017000725
Bézier, A. et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926–930 (2009).
pubmed: 19213916
doi: 10.1126/science.1166788
Thézé, J., Bézier, A., Periquet, G., Drezen, J. M. & Herniou, E. A. Paleozoic origin of insect large dsDNA viruses. Proc. Natl Acad. Sci. USA 108, 15931–15935 (2011).
pubmed: 21911395
pmcid: 3179036
doi: 10.1073/pnas.1105580108
Drezen, J.-M., Herniou, E. A. & Bézier, A. in Parasitoid Viruses Symbionts and Pathogens (eds Beckage, N. E. & Drezen, J.-M.) 15–31 (Elsevier, San Diego, 2012).
Burke, G. R. & Strand, M. R. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus. J. Virol. 86, 3293–3306 (2012).
pubmed: 22238295
pmcid: 3302316
doi: 10.1128/JVI.06434-11
Burke, G. R., Thomas, S. A., Eum, J. H. & Strand, M. R. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog. 9, e1003348 (2013).
pubmed: 23671417
pmcid: 3649998
doi: 10.1371/journal.ppat.1003348
Beckage, N. E., Tan, F., Schleifer, K. W., Lane, R. D. & Cherubin, L. L. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 26, 165–195 (1994).
doi: 10.1002/arch.940260209
Strand, M. R. in Parasitoid Viruses Symbionts and Pathogens (eds Beckage, N. E. & Drezen, J.-M.) 149–161 (Elsevier, San Diego, 2012).
Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLoS Genet. 6, e1001191 (2010).
pubmed: 21124940
pmcid: 2987831
doi: 10.1371/journal.pgen.1001191
Murphy, N., Banks, J. C., Whitfield, J. B. & Austin, A. D. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol. Phylogenet. Evol. 47, 378–395 (2008).
pubmed: 18325792
doi: 10.1016/j.ympev.2008.01.022
Belle, E. et al. Visualization of polydnavirus sequences in a parasitoid wasp chromosome. J. Virol. 76, 5793–5796 (2002).
pubmed: 11992007
pmcid: 137038
doi: 10.1128/JVI.76.11.5793-5796.2002
Gundersen-Rindal, D., Dupuy, C., Huguet, E. & Drezen, J.-M. Parasitoid polydnaviruses: evolution, pathology and applications. Biocont. Sci. Technol. 23, 1–61 (2013).
doi: 10.1080/09583157.2012.731497
Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Ann. Rev. Entomol. 64, 227–242 (2019).
doi: 10.1146/annurev-ento-020117-043322
Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930 (2012).
pubmed: 22952454
pmcid: 3431598
doi: 10.1371/journal.pgen.1002930
Wang, H. et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 9, 4820 (2018).
pubmed: 30446639
pmcid: 6240031
doi: 10.1038/s41467-018-07226-6
Bézier, A. et al. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos. Trans. R. Soc. B 368, 0047 (2013).
doi: 10.1098/rstb.2013.0047
Desjardins, C. A. et al. Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps. Genome Biol. 9, R183 (2008).
pubmed: 19116010
pmcid: 2646287
doi: 10.1186/gb-2008-9-12-r183
Bézier, A. et al. The genome of the nucleopolyhedrosis-causing virus from Tipula oleracea sheds new light on the Nudiviridae family. J. Virol. 89, 3008–3025 (2015).
pubmed: 25540386
doi: 10.1128/JVI.02884-14
Harrison, R. L. et al. ICTV virus taxonomy profile: nudiviridae. J. Gen. Virol. 101, 3–4 (2020).
pubmed: 31935180
pmcid: 7414434
doi: 10.1099/jgv.0.001381
Burke, G. R., Walden, K. K., Whitfield, J. B., Robertson, H. M. & Strand, M. R. Widespread genome reorganization of an obligate virus mutualist. PLoS Genet. 10, e1004660 (2014).
pubmed: 25232843
pmcid: 4169385
doi: 10.1371/journal.pgen.1004660
Burke, G. R., Walden, K. K. O., Whitfield, J. B., Robertson, H. M. & Strand, M. R. Whole genome sequence of the parasitoid wasp Microplitis demolitor that harbors an endogenous virus mutualist. G3 (Bethesda) 8, 2875–2880 (2018).
doi: 10.1534/g3.118.200308
Sugiura, N. et al. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 23, 1520–1530 (2013).
pubmed: 24052236
doi: 10.1093/glycob/cwt082
Wyder, S., Blank, F. & Lanzrein, B. Fate of polydnavirus DNA of the egg-larval parasitoid Chelonus inanitus in the host Spodoptera littoralis. J. Insect Physiol. 49, 491–500 (2003).
pubmed: 12770628
doi: 10.1016/S0022-1910(03)00056-8
Beck, M. H., Inman, R. B. & Strand, M. R. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions. Virology 359, 179–189 (2007).
pubmed: 17034828
doi: 10.1016/j.virol.2006.09.002
Herniou, E. A. et al. When parasitc wasps hijacked viruses: genomic and functionnal evolution of polydnaviruses. Philos. Transac. R. Soc. B 368, 1–13 (2013).
Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).
pubmed: 23875801
pmcid: 4426292
doi: 10.1146/annurev-genom-091212-153455
Louis, F. et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J. Virol. 87, 9649–9660 (2013).
pubmed: 23804644
pmcid: 3754133
doi: 10.1128/JVI.00886-13
Drezen, J. M., Chevignon, G., Louis, F. & Huguet, E. Origin and evolution of symbiotic viruses associated with parasitoid wasps. Cur. Opin. Insect Sci. 6, 35–43 (2014).
doi: 10.1016/j.cois.2014.09.008
Burke, G. R., Simmonds, T. J., Thomas, S. A. & Strand, M. R. Microplitis demolitor bracovirus proviral loci and clustered replication genes exhibit distinct DNA amplification patterns during replication. J. Virol. 89, 9511–9523 (2015).
pubmed: 26157119
pmcid: 4542368
doi: 10.1128/JVI.01388-15
Francino, M. P. An adaptive radiation model for the origin of new gene functions. Nat. Genet. 37, 573–577 (2005).
pubmed: 15920518
doi: 10.1038/ng1579
Gauthier, J. et al. Genetic footprints of adaptive divergence in the bracovirus of Cotesia sesamiae identified by targeted resequencing. Mol. Ecol. 27, 2109–2123 (2018).
pubmed: 29603484
doi: 10.1111/mec.14574
Pasquier-Barre, F. et al. Polydnavirus replication: the EP1 segment of the parasitoid wasp Cotesia congregata is amplified within a larger precursor molecule. J. Gen. Virol. 83, 2035–2045 (2002).
pubmed: 12124468
doi: 10.1099/0022-1317-83-8-2035
Shi, M. et al. The genomes of two parasitic wasps that parasitize the diamondback moth. BMC Genomics 20, 893 (2019).
pubmed: 31752718
pmcid: 6873472
doi: 10.1186/s12864-019-6266-0
Bichang’a, G. et al. Alpha-amylase mediates host acceptance in the Braconid parasitoid Cotesia flavipes. J. Chem. Ecol. 44, 1030–1039 (2018).
pubmed: 30084041
doi: 10.1007/s10886-018-1002-9
Kumar, P., Pandit, S. S., Steppuhn, A. & Baldwin, I. T. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl Acad. Sci. USA 111, 1245–1252 (2014).
pubmed: 24379363
doi: 10.1073/pnas.1314848111
Pentzold, S. et al. Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations. Insect Biochem. Mol. Biol. 66, 119–128 (2015).
pubmed: 26483288
doi: 10.1016/j.ibmb.2015.10.004
Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14, 17–24 (2016).
pubmed: 27436642
doi: 10.1016/j.cois.2015.12.004
Masson, F., Zaidman-Remy, A. & Heddi, A. Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Phil. Trans. Royal Soc. B 371, 20150298 (2016).
Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2, 1–12 (2001).
doi: 10.1186/gb-2001-2-12-research0054
Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).
pubmed: 21841803
pmcid: 3717454
doi: 10.1038/nature10341
Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).
pubmed: 23334415
doi: 10.1038/nature11832
Legeai, F. et al. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biol. 18, 89 (2020).
Pichon, A. et al. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 1, e1501150 (2015).
pubmed: 26702449
pmcid: 4681339
doi: 10.1126/sciadv.1501150
Drezen, J. M. et al. Endogenous viruses of parasitic wasps: variations on a common theme. Curr. Opin. Virol. 25, 41–48 (2017).
pubmed: 28728099
doi: 10.1016/j.coviro.2017.07.002
Leobold, M. et al. The Domestication of a large DNA virus by the wasp Venturia canescens involves targeted genome reduction through pseudogenization. Genome Biol. Evol. 10, 1745–1764 (2018).
pubmed: 29931159
pmcid: 6054256
doi: 10.1093/gbe/evy127
Burke, G. R., Simmonds, T. J., Sharanowski, B. J. & Geib, S. M. Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture. Mol. Biol. Evol. 35, 2463–2474 (2018).
pubmed: 30053110
doi: 10.1093/molbev/msy148
Di Giovanni, D. et al. A behavior-manipulating virus relative as a source of adaptive genes for Drosophila parasitoids. Mol. Biol. Evol. 37, 2791–2807 (2020).
Gitau, C. W., Gundersen-Rindal, D., Pedroni, M., Mbugi, P. J. & Dupas, S. Differential expression of the CrV1 haemocyte inactivation-associated polydnavirus gene in the African maize stem borer Busseola fusca (Fuller) parasitized by two biotypes of the endoparasitoid Cotesia sesamiae (Cameron). J. Insect Physiol. 53, 676–684 (2007).
pubmed: 17570392
doi: 10.1016/j.jinsphys.2007.04.008
Veiga, A. C. P., Vacari, A. M., Volpe, H. X. L., de Laurentis, V. L. & De Bortoli, S. A. Quality control of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) from different Brazilian bio-factories. Biocont. Sci. Technol. 23, 665–673 (2013).
doi: 10.1080/09583157.2013.790932
Geervliet, J. B. F., Vet, L. E. M. & Dicke, M. Volatiles from damaged plants as major cues in long‐range host‐searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. et. Applicata 73, 289–297 (1994).
doi: 10.1111/j.1570-7458.1994.tb01866.x
Smid, H. M. et al. Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc. Biol. Sci. 274, 1539–1546 (2007).
pubmed: 17439855
pmcid: 2176164
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
pubmed: 28763055
pmcid: 5538240
doi: 10.1038/sdata.2017.93
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
pubmed: 16056220
pmcid: 1464427
doi: 10.1038/nature03959
Aury, J. M. et al. High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies. BMC Genomics 9, 603 (2008).
pubmed: 19087275
pmcid: 2625371
doi: 10.1186/1471-2164-9-603
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
pubmed: 23587118
pmcid: 3626529
doi: 10.1186/2047-217X-1-18
Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife 3, e03318 (2014).
pubmed: 25517076
pmcid: 4381813
doi: 10.7554/eLife.03318
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Baudry, L. et al. instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biol. 21, 148 (2020).
pubmed: 32552806
pmcid: 7386250
doi: 10.1186/s13059-020-02041-z
Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).
pubmed: 29949969
pmcid: 6022658
doi: 10.1093/bioinformatics/bty266
Waterhouse, R. M. et al. BUSCO Applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
pubmed: 29220515
doi: 10.1093/molbev/msx319
Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).
pubmed: 21304975
pmcid: 3031573
doi: 10.1371/journal.pone.0016526
Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
doi: 10.1186/1471-2105-5-59
Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
pubmed: 18025269
pmcid: 2134774
doi: 10.1101/gr.6743907
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).
doi: 10.1186/1471-2105-10-421
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 24451626
pmcid: 3998142
doi: 10.1093/bioinformatics/btu031
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
pubmed: 16081474
doi: 10.1093/bioinformatics/bti610
Dunn, N. A. et al. Apollo: Democratizing genome annotation. PLoS Comput. Biol. 15, e1006790 (2019).
pubmed: 30726205
pmcid: 6380598
doi: 10.1371/journal.pcbi.1006790
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Kumar, S., Jones, M., Koutsovoulos, G., Clarke, M. & Blaxter, M. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Front. Genet. 4, 237 (2013).
pubmed: 24348509
pmcid: 3843372
doi: 10.3389/fgene.2013.00237
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
pubmed: 26243257
pmcid: 4531804
doi: 10.1186/s13059-015-0721-2
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
pubmed: 12136088
pmcid: 135756
doi: 10.1093/nar/gkf436
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).
pubmed: 14530136
doi: 10.1080/10635150390235520
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
pubmed: 22847109
pmcid: 4594756
doi: 10.1038/nmeth.2109
Zhou, X. et al. Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biol. Evol. 7, 2407–2416 (2015).
pubmed: 26272716
pmcid: 4558866
doi: 10.1093/gbe/evv149
Robertson, H. M., Gadau, J. & Wanner, K. W. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol. Biol. 19, 121–136 (2010).
pubmed: 20167023
doi: 10.1111/j.1365-2583.2009.00979.x
Robertson, H. M. & Wanner, K. W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395–1403 (2006).
pubmed: 17065611
pmcid: 1626641
doi: 10.1101/gr.5057506
Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).
pubmed: 11108472
doi: 10.1089/106652700750050871
Stolzer, M. et al. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28, i409–i415 (2012).
pubmed: 22962460
pmcid: 3436813
doi: 10.1093/bioinformatics/bts386
Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. MACSE: Multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).
pubmed: 21949676
pmcid: 3174933
doi: 10.1371/journal.pone.0022594
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113
doi: 10.1093/molbev/msm088
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408
pmcid: 4053844
doi: 10.1186/gb-2013-14-4-r36
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
pubmed: 23558742
pmcid: 3664803
doi: 10.1093/nar/gkt214
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
pubmed: 20196867
pmcid: 2864565
doi: 10.1186/gb-2010-11-3-r25
Lund, S. P., Nettleton, D., McCarthy, D. J. & Smyth, G. K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol. 11, 23104842 (2012).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Gauthier, J. Custom scripts for Cotesia genomes analyses. Zenodo https://doi.org/10.5281/zenodo.4116412 (2020).