The clinical meaning of levodopa equivalent daily dose in Parkinson's disease.
levodopa equivalent daily dose
parkinson disease
Journal
Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
revised:
14
12
2020
received:
26
07
2020
accepted:
12
01
2021
pubmed:
19
1
2021
medline:
15
12
2021
entrez:
18
1
2021
Statut:
ppublish
Résumé
Levodopa (L-dopa) remains the basis of pharmacological treatment of Parkinson's disease (PD). However, L-dopa therapy is associated with the development of complications and presents major challenges in the long-term treatment. Thus, other medications may be suggested to delay and/or reduce the doses of L-dopa in order to prevent complications. The interpretation of treatment evolution reported in clinical trials on PD may be tricky, especially due to some variability in medications and dose regimens. Some authors have suggested a conversion factor to generate a total L-dopa equivalent daily dose (LEDD), calculated as a sum of each parkinsonian medication. Therefore, LEDD provides an artificial summary of the total daily medication a patient is receiving, and to date, there is no report focusing on the clinical interpretation of this parameter. Thus, based on a 3-year, multi-center retrospective study assessing the impact of second-line therapy initiation on LEDD in PD patients, the aim of our article was to discuss LEDD as a quantitative outcome to estimate the impact of second-line therapies on medication regimens; and in the second part of the discussion, to provide a narrative review of the clinical outcomes associated with LEDD in the literature.
Substances chimiques
Antiparkinson Agents
0
Neuroprotective Agents
0
Levodopa
46627O600J
Types de publication
Journal Article
Multicenter Study
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
620-630Informations de copyright
© 2021 Société Française de Pharmacologie et de Thérapeutique.
Références
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368-376.
Tomlinson CL, Stowe R, Patel S, et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2010;25:2649-2653.
Snineh MA, Hajyahya A, Linetsky E, et al. A real-life search for the optimal set of conversion factors to levodopa-equivalent-dose in Parkinson’s disease patients on polytherapy. J Park Dis. 2020;10:173-178.
Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord Off J Mov Disord Soc. 2005;20:151-157.
Hauser RA. How to dose carbidopa and levodopa extended- release capsules (Rytary). Clin Med J. 2015;1:34-37.
Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896-908.
Timpka J, Fox T, Fox K, et al. Improvement of dyskinesias with L-dopa infusion in advanced Parkinson’s disease. Acta Neurol Scand. 2016;133:451-458.
Băjenaru O, Ene A, Popescu BO, et al. The effect of levodopa-carbidopa intestinal gel infusion long-term therapy on motor complications in advanced Parkinson’s disease: a multicenter Romanian experience. J Neural TransmVienna Austria. 2016;1996(123):407-414.
Esselink R, de Bie RMA, de Haan RJ, et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology. 2004;62:201-207.
Volkmann J, Albanese A, Antonini A, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review. J Neurol. 2013;260:2701-2714.
Worth PF. When the going gets tough: how to select patients with Parkinson’s disease for advanced therapies. Pract Neurol. 2013;13:140-152.
Trenkwalder C, Chaudhuri K, García Ruiz PJ, et al. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson’s disease-Clinical practice recommendations. Parkinsonism Relat Disord. 2015;21:1023-1030.
Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13:141-149.
Fernandez HH, Standaert DG, Hauser RA, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord Off J Mov Disord Soc. 2015;30:500-509.
Limousin P, Krack P, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105-1111.
Vizcarra JA, Situ-Kcomt M, Artusi CA, et al. Subthalamic deep brain stimulation and levodopa in Parkinson’s disease: a meta-analysis of combined effects. J Neurol. 2019;266:289-297.
Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord Off J Mov Disord Soc. 2006;21(Suppl 14):S290-304.
Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077-2091.
Artusi CA, Dwivedi AK, Romagnolo A, et al. Association of subthalamic deep brain stimulation with motor, functional, and pharmacologic outcomes in patients with monogenic Parkinson disease: a systematic review and meta-analysis. JAMA Netw Open. 2019;2:e187800.
Chen T, Mirzadeh Z, Chapple KM, et al. Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease. J. Neurosurg. 2018;130:109-120.
Khabarova EA, Denisova NP, Dmitriev AB, Slavin KV, Verhagen ML. Deep brain stimulation of the subthalamic nucleus in patients with Parkinson disease with prior pallidotomy or thalamotomy. Brain Sci. 2018;8(4):66.
Dafsari HS, Martinez-Martin P, Rizos A, et al. EuroInf 2: subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson's disease. Mov Disord Off J Mov Disord Soc. 2019;34:353-365.
Wider C, Pollo C, Bloch J, Burkhard PR, Vingerhoets FJG. Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord. 2008;14:114-119.
Devos D, French DUODOPA Study Group. Patient profile, indications, efficacy and safety of duodenal levodopa infusion in advanced Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2009;24:993-1000.
Udd M, Lyytinen J, Eerola-Rautio J, et al. Problems related to levodopa-carbidopa intestinal gel treatment in advanced Parkinson’s disease. Brain Behav. 2017;7(7):e00737.
Wirdefeldt K, Odin P, Nyholm D. Levodopa-carbidopa intestinal gel in patients with Parkinson’s disease: a systematic review. CNS Drugs. 2016;30:381-404.
Antonini A, Poewe W, Chaudhuri KR, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s: Final results of the GLORIA registry. Parkinsonism Relat Disord. 2017;45:13-20.
Nyholm D, Odin P, Nyholm D. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol. 2003;26:156-163.
Wenzel K, Homann CN, Fabbrini G, Colosimo C. The role of subcutaneous infusion of apomorphine in Parkinson’s disease. Expert Rev Neurother. 2014;14:833-843.
Drapier S, Gillioz A-S, Leray E, et al. Apomorphine infusion in advanced Parkinson’s patients with subthalamic stimulation contraindications. Parkinsonism Relat Disord. 2012;18:40-44.
Drapier S, Eusebio A, Degos B, et al. Quality of life in Parkinson’s disease improved by apomorphine pump: the OPTIPUMP cohort study. J Neurol. 2016;263:1111-1119.
Borgemeester RWK, van Laar T. Continuous subcutaneous apomorphine infusion in Parkinson’s disease patients with cognitive dysfunction: a retrospective long-term follow-up study. Parkinsonism Relat Disord. 2017;45:33-38.
García Ruiz PJ, Sesar Ignacio A, Ares Pensado B, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: a multicenter study. Mov Disord Off J Mov Disord Soc. 2008;23:1130-1136.
Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;17:749-759.
Bhidayasiri R, Phokaewvarangkul O, Boonpang K, et al. Long-term apomorphine infusion users versus short-term users: an international dual-center analysis of the reasons for discontinuing therapy. Clin Neuropharmacol. 2019;42:172-178.
Borgemeester RWK, Drent M, van Laar T. Motor and non-motor outcomes of continuous apomorphine infusion in 125 Parkinson’s disease patients. Parkinsonism Relat Disord. 2016;23:17-22.
Houvenaghel JF, Drapier S, Duprez J, et al. Effects of continuous subcutaneous apomorphine infusion in Parkinson’s disease without cognitive impairment on motor, cognitive, psychiatric symptoms and quality of life. J Neurol Sci. 2018;395:113-118.
Martinez-Martin P, Reddy P, Katzenschlager R, Chaudhuri K. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s Disease. Mov Disord. 2015;30:510-516.
Weiss JL, Chase TN. Levodopa in Parkinsonism. Drugs. 1971;2:257-261.
Marsden CD, Parkes JD. ‘On-off’ effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet Lond Engl. 1976;1:292-296.
Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N. Engl J Med. 2004;351:2498-2508.
Grandas F, Galiano ML, Tabernero C. Risk factors for levodopa-induced dyskinesias in Parkinson’s disease. J Neurol. 1999;246:1127-1133.
Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain J Neurol. 2000;123:2297-2305.
Stocchi F, Jenner P, Obeso JA. When do levodopa motor fluctuations first appear in Parkinson’s disease? Eur Neurol. 2010;63:257-266.
Eusebi P, Romoli M, Paoletti FP, et al. Risk factors of levodopa-induced dyskinesia in Parkinson’s disease: results from the PPMI cohort. NPJ Park Dis. 2018;4:33.
Olanow CW, Kieburtz K, Rascol O, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2013;28:1064-1071.
Olanow CW, Stocchi F. Levodopa: a new look at an old friend. Mov Disord Off J Mov Disord Soc. 2018;33:859-866.
Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002;59:408-413.
Gunal DI, Nurichalichi K, Tuncer N, et al. The clinical profile of nonmotor fluctuations in Parkinson’s disease patients. Can J Neurol Sci J Can Sci Neurol. 2002;29:61-64.
Brun L, Lefaucheur R, Fetter D, et al. Non-motor fluctuations in Parkinson’s disease: prevalence, characteristics and management in a large cohort of parkinsonian outpatients. Clin Neurol Neurosurg. 2014;127:93-96.
Siciliano M, Trojano L, Santangelo G, et al. Fatigue in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord Off J Mov Disord Soc. 2018;33:1712-1723.
Herlofson K, Larsen JP. Measuring fatigue in patients with Parkinson’s disease - the Fatigue Severity Scale. Eur J Neurol. 2002;9:595-600.
Sung S, Vijiaratnam N, Chan DWC, et al. Parkinson disease: a systemic review of pain sensitivities and its association with clinical pain and response to dopaminergic stimulation. J Neurol Sci. 2018;395:172-206.
Chang C, Fan J, Chang B, Wu Y. Anxiety and levodopa equivalent daily dose are potential predictors of sleep quality in patients with Parkinson disease in Taiwan. Front Neurol. 2019;10:340.
Laudisio A, Vetrano DL, Meloni E, et al. Dopaminergic agents and nutritional status in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2014;29:1543-1547.
Roy M-A, Doiron M, Talon-Croteau J, et al. Effects of Antiparkinson medication on cognition in Parkinson’s disease: a systematic review. Can J Neurol Sci J Can Sci Neurol. 2018;45:375-404.
Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30:1-23.
Ikeda M, Kataoka H, Ueno S. Can levodopa prevent cognitive decline in patients with Parkinson’s disease? Am J Neurodegener Dis. 2017;6:9-14.
Im H, Adams S, Abeyesekera A, et al. Effect of levodopa on speech dysfluency in Parkinson’s disease. Mov Disord Clin Pract. 2019;6:150-154.
Daniels C, Krack P, Volkmann J, et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2010;25:1583-1589.
Lenka A, Hegde S, Arumugham SS, Pal PK. Pattern of cognitive impairment in patients with Parkinson’s disease and psychosis: a critical review. Parkinsonism Relat Disord. 2017;37:11-18.
Martinez-Fernandez R, Pelissier P, Quesada JL, et al. Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:311-318.
Abbes M, Lhommée E, Thobois S, et al. Subthalamic stimulation and neuropsychiatric symptoms in Parkinson’s disease: results from a long-term follow-up cohort study. J Neurol Neurosurg Psychiatry. 2018;89:836-843.
Singer C. Adverse effects in the treatment of Parkinson’s disease. Expert Rev Neurother. 2002;2:105-118.
Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.
Chang FCF, Lhommée E, Thobois S, et al. Intraduodenal levodopa-carbidopa intestinal gel infusion improves both motor performance and quality of life in advanced Parkinson’s disease. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;25:41-45.
Voon V, Napier TC, Frank MJ, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 2017;16:238-250.
Gatto EM, Aldinio V. Impulse control disorders in Parkinson’s disease. A brief and comprehensive review. Front Neurol. 2019;10 351.
Mamikonyan E, Siderowf AD, Duda JE, et al. Long-term follow-up of impulse control disorders in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2008;23:75-80.
Weintraub D, Claassen DO. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589-595.
Sharma A, Goyal V, Behari M, et al. Impulse control disorders and related behaviours (ICD-RBs) in Parkinson’s disease patients: assessment using ‘Questionnaire for impulsive-compulsive disorders in Parkinson’s disease’ (QUIP). Ann Indian Acad Neurol. 2015;18:49-59.
Cannas A, Solla P, Marrosu MG, Marrosu F. Dopamine dysregulation syndrome in Parkinson’s disease patients on duodenal levodopa infusion. Mov Disord Off J Mov Disord Soc. 2013;28:840-841.
Salomone G, Marano M, Di Biase L, et al. Dopamine dysregulation syndrome and punding in levodopa-carbidopa intestinal gel (LCIG) infusion: a serious but preventable complication. Parkinsonism Relat Disord. 2015;21:1124-1125.
Solla P, Fasano A, Cannas A, et al. Dopamine agonist withdrawal syndrome (DAWS) symptoms in Parkinson’s disease patients treated with levodopa-carbidopa intestinal gel infusion. Parkinsonism Relat Disord. 2015;21:968-971.
Perez-Lloret S, Negre-Pages L, Damier P, et al. L-DOPA-induced dyskinesias, motor fluctuations and health-related quality of life: the COPARK survey. Eur J Neurol. 2017;24:1532-1538.
Antonini A, Robieson WZ, Bergmann L, et al. Age/disease duration influence on activities of daily living and quality of life after levodopa-carbidopa intestinal gel in Parkinson’s disease. Neurodegener Dis Manag. 2018;8:161-170.
Frizon LA, Hogue O, Achey R, et al. Quality of life improvement following deep brain stimulation for Parkinson disease: development of a prognostic model. Neurosurgery. 2019;85:343-349.
Jiang JL, Chen SY, Tsai ST. Quality of life in patients with Parkinson’s disease after subthalamic stimulation: an observational cohort study for outcome prediction. Ci Ji Yi Xue Za Zhi Tzu-Chi Med J. 2019;31:107-112.