The human endogenous attentional control network includes a ventro-temporal cortical node.
Adult
Attention
/ physiology
Brain Mapping
Diffusion Tensor Imaging
Female
Frontal Lobe
/ diagnostic imaging
Healthy Volunteers
Humans
Male
Motion Perception
/ physiology
Neural Pathways
/ diagnostic imaging
Parietal Lobe
/ diagnostic imaging
Photic Stimulation
/ methods
Temporal Lobe
/ diagnostic imaging
Young Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 01 2021
15 01 2021
Historique:
received:
16
02
2020
accepted:
07
12
2020
entrez:
16
1
2021
pubmed:
17
1
2021
medline:
30
1
2021
Statut:
epublish
Résumé
Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.
Identifiants
pubmed: 33452252
doi: 10.1038/s41467-020-20583-5
pii: 10.1038/s41467-020-20583-5
pmc: PMC7810878
doi:
Types de publication
Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
360Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB029272
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH120288
Pays : United States
Références
Goldstein, B., Chun, M. M. & Wolfe, J. M. “Visual attention” in Blackwell Handbook of Perception, (ed. Goldstein, B. E.) pp. 272–310 (Blackwell Publishers Ltd., Oxford, UK, 2001).
Heilman, K. M. & Valenstein E. Frontal lobe neglect in man. Neurology 22, 660–664 (1972).
pubmed: 4673341
doi: 10.1212/WNL.22.6.660
Heilman, K. M., Watson, R. T., Bower, D. & Valenstein, E. Right hemisphere dominance for attention. Rev. Neurol. 139, 15–17 (1983).
pubmed: 6407086
Vallar, G. & Perani, D. The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622 (1986).
pubmed: 3785649
doi: 10.1016/0028-3932(86)90001-1
Mort, D. J. et al. The anatomy of visual neglect. Brain 126, 1986–1997 (2003).
pubmed: 12821519
doi: 10.1093/brain/awg200
Daffner, K. R., Ahern, G. L., Weintraub, S. & Mesulam, M. M. Dissociated neglect behavior following sequential strokes in the right hemisphere. Ann. Neurol. 28, 97–101 (1990).
pubmed: 2375643
doi: 10.1002/ana.410280119
Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol. 243, 652–657 (1996).
pubmed: 8892067
doi: 10.1007/BF00878662
Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).
pubmed: 10845067
doi: 10.1146/annurev.neuro.23.1.315
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).
pubmed: 18466742
pmcid: 2441869
doi: 10.1016/j.neuron.2008.04.017
Stemmann, H. & Freiwald, W. A. Attentive motion discrimination recruits an area in inferotemporal cortex. J. Neurosci. 36, 11918–11928 (2016).
pubmed: 27881778
pmcid: 5125246
doi: 10.1523/JNEUROSCI.1888-16.2016
Bogadhi, A. R., Bollimunta, A., Leopold, D. A. & Krauzlis, R. J. Brain regions modulated during covert visual attention in the macaque. Sci. Rep. 8, 15237 (2018).
pubmed: 30323289
pmcid: 6189039
doi: 10.1038/s41598-018-33567-9
Caspari, N., Janssens, T., Mantini, D., Vandenberghe, R. & Vanduffel, W. Covert shifts of spatial attention in the macaque monkey. J. Neurosci. 35, 7695–7714 (2015).
pubmed: 25995460
pmcid: 4438122
doi: 10.1523/JNEUROSCI.4383-14.2015
Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).
pubmed: 20192813
pmcid: 3683564
doi: 10.1146/annurev-neuro-060909-152823
Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).
pubmed: 9461214
doi: 10.1038/35135
Thompson, K. G. & Bichot, N. P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).
pubmed: 15581711
Stemmann, H. & Freiwald, W. A. Evidence for an attentional priority map in inferotemporal cortex. Proc. Natl Acad. Sci. USA 116, 23797–23805 (2019).
pubmed: 31685625
doi: 10.1073/pnas.1821866116
pmcid: 6876153
Fecteau, J. H. & Munoz, D. P. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).
pubmed: 16843702
doi: 10.1016/j.tics.2006.06.011
Bogadhi, A. R., Bollimunta, A., Leopold, D. A. & Krauzlis, R. J. Spatial attention deficits are causally linked to an area in macaque temporal cortex. Curr. Biol. 29, 726–736.e4 (2019).
pubmed: 30773369
pmcid: 6401289
doi: 10.1016/j.cub.2019.01.028
Sani, I., McPherson, B. C., Stemmann, H., Pestilli, F. & Freiwald, W. A. Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife 8, 1–21 (2019).
doi: 10.7554/eLife.40520
Doricchi, F., Macci, E., Silvetti, M. & Macaluso, E. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb. Cortex 20, 1574–1585 (2010).
pubmed: 19846472
doi: 10.1093/cercor/bhp215
Geng, J. J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620 (2013).
pubmed: 23999082
pmcid: 3878596
doi: 10.1016/j.neubiorev.2013.08.010
Macaluso, E. & Doricchi, F. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy. Front. Hum. Neurosci. 7, 685 (2013).
pubmed: 24155707
pmcid: 3800774
doi: 10.3389/fnhum.2013.00685
Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events Philos. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).
doi: 10.1098/rstb.1999.0482
Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci. 2, 87–97 (1998).
pubmed: 21227084
doi: 10.1016/S1364-6613(98)01145-0
Watson, R. T., Valenstein, E., Day, A. & Heilman, K. M. Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. Arch. Neurol. 51, 1014–1021 (1994).
pubmed: 7944999
doi: 10.1001/archneur.1994.00540220060015
Shulman, G. L., Astafiev, S. V. & McAvoy, M. P., d Avossa, G. & Corbetta, M.Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb. Cortex 17, 2625–2633 (2007).
pubmed: 17264254
doi: 10.1093/cercor/bhl170
Patel, G. H. et al. Functional evolution of new and expanded attention networks in humans. Proc. Natl Acad. Sci. USA 112, 9454–9459 (2015).
pubmed: 26170314
doi: 10.1073/pnas.1420395112
pmcid: 4522817
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).
pubmed: 11994752
doi: 10.1038/nrn755
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).
pubmed: 16788060
doi: 10.1073/pnas.0604187103
pmcid: 1480402
Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vis. Res. 41, 1359–1378 (2001).
pubmed: 11322980
doi: 10.1016/S0042-6989(01)00045-1
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579
pmcid: 4990127
doi: 10.1038/nature18933
Kolster, H., Peeters, R. & Orban, G. A. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J. Neurosci. 30, 9801–9820 (2010).
pubmed: 20660263
pmcid: 6632824
doi: 10.1523/JNEUROSCI.2069-10.2010
Van Essen, D. C. & Glasser, M. F. Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99, 640–663 (2018).
pubmed: 30138588
pmcid: 6149530
doi: 10.1016/j.neuron.2018.07.002
Shulman, G. L. et al. Quantitative analysis of attention and detection signals during visual search. J. Neurophysiol. 90, 3384–3397 (2003).
pubmed: 12917383
doi: 10.1152/jn.00343.2003
Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235–241 (1998).
pubmed: 10195149
doi: 10.1038/681
Orban, G. A., Zhu, Q. & Vanduffel, W. The transition in the ventral stream from feature to real-world entity representations. Front. Psychol. 5, 695 (2014).
pubmed: 25071663
pmcid: 4079243
doi: 10.3389/fpsyg.2014.00695
Avesani, P. et al. The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci. Data 6, 69 (2019).
pubmed: 31123325
pmcid: 6533280
doi: 10.1038/s41597-019-0073-y
Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).
pubmed: 23702418
doi: 10.1016/j.neuroimage.2013.05.057
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
pubmed: 22366334
doi: 10.1016/j.neuroimage.2012.02.018
Takemura, H., Caiafa, C. F., Wandell, B. A. & Pestilli, F. Ensemble tractography. PLoS Comput. Biol. 12, e1004692 (2016).
pubmed: 26845558
pmcid: 4742469
doi: 10.1371/journal.pcbi.1004692
Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N. & Wandell, B. A. Evaluation and statistical inference for human connectomes. Nat. Methods 11, 1058–1063 (2014).
pubmed: 25194848
pmcid: 4180802
doi: 10.1038/nmeth.3098
Caiafa, C. F. & Pestilli, F. Multidimensional encoding of brain connectomes. Sci. Rep. 7, 11491 (2017).
pubmed: 28904382
pmcid: 5597641
doi: 10.1038/s41598-017-09250-w
Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).
pubmed: 29116093
pmcid: 5677006
doi: 10.1038/s41467-017-01285-x
Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).
pubmed: 16201007
pmcid: 1239902
doi: 10.1371/journal.pcbi.0010042
Rubner, Y., Tomasi, C. & Guibas, L. J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000).
doi: 10.1023/A:1026543900054
Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).
pubmed: 8946355
doi: 10.1002/mrm.1910360612
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15, 435–455 (2002).
pubmed: 12489094
doi: 10.1002/nbm.782
Le Bihan, D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 8, 375–386 (1995).
pubmed: 8739274
doi: 10.1002/nbm.1940080711
Thiebaut de Schotten, M. et al. A lateralized brain network for visuospatial attention. Nat. Neurosci. 14, 1245–1246 (2011).
pubmed: 21926985
doi: 10.1038/nn.2905
Bullock, D. et al. Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct. Funct. 224, 2631–2660 (2019).
pubmed: 31342157
doi: 10.1007/s00429-019-01907-8
Umarova, R. M. et al. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb. Cortex 20, 121–129 (2010).
pubmed: 19406904
doi: 10.1093/cercor/bhp086
Maunsell, J. H. R. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).
pubmed: 16697058
doi: 10.1016/j.tins.2006.04.001
O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).
pubmed: 9136768
doi: 10.1016/S0896-6273(00)80300-1
Wojciulik, E., Kanwisher, N. & Driver, J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J. Neurophysiol. 79, 1574–1578 (1998).
pubmed: 9497433
doi: 10.1152/jn.1998.79.3.1574
Chawla, D., Rees, G. & Friston, K. J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 2, 671–676 (1999).
pubmed: 10404202
doi: 10.1038/10230
Liu, T., Slotnick, S. D., Serences, J. T. & Yantis, S. Cortical mechanisms of feature-based attentional control. Cereb. Cortex 13, 1334–1343 (2003).
pubmed: 14615298
doi: 10.1093/cercor/bhg080
Treue, S. & Martínez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).
pubmed: 10376597
doi: 10.1038/21176
McAdams, C. J. & Maunsell, J. H. Attention to both space and feature modulates neuronal responses in macaque area V4. J. Neurophysiol. 83, 1751–1755 (2000).
pubmed: 10712494
doi: 10.1152/jn.2000.83.3.1751
Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).
pubmed: 7351125
doi: 10.1016/0010-0285(80)90005-5
Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).
pubmed: 10204546
doi: 10.1038/7286
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).
pubmed: 10700263
doi: 10.1038/73009
Sapir, A., d Avossa, G., McAvoy, M., Shulman, G. L. & Corbetta, M. Brain signals for spatial attention predict performance in a motion discrimination task. Proc. Natl Acad. Sci. USA 102, 17810–17815 (2005).
pubmed: 16306268
doi: 10.1073/pnas.0504678102
pmcid: 1308888
Ester, E. F., Sutterer, D. W., Serences, J. T. & Awh, E. Feature-selective attentional modulations in human frontoparietal cortex. J. Neurosci. 36, 8188–8199 (2016).
pubmed: 27488638
pmcid: 4971365
doi: 10.1523/JNEUROSCI.3935-15.2016
Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vis. Res. 41, 1409–1422 (2001).
pubmed: 11322983
doi: 10.1016/S0042-6989(01)00073-6
Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).
pubmed: 11520991
doi: 10.1126/science.1061133
Lafer-Sousa, R., Conway, B. R. & Kanwisher, N. G. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J. Neurosci. 36, 1682–1697 (2016).
pubmed: 26843649
pmcid: 4737777
doi: 10.1523/JNEUROSCI.3164-15.2016
Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl Acad. Sci. USA 92, 8135–8139 (1995).
pubmed: 7667258
doi: 10.1073/pnas.92.18.8135
pmcid: 41110
Conway, B. R., Moeller, S. & Tsao, D. Y. Specialized color modules in macaque extrastriate cortex. Neuron 56, 560–573 (2007).
pubmed: 17988638
doi: 10.1016/j.neuron.2007.10.008
pmcid: 8162777
Conway, B. R. & Tsao, D. Y. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proc. Natl Acad. Sci. USA 106, 18034–18039 (2009).
pubmed: 19805195
doi: 10.1073/pnas.0810943106
pmcid: 2764907
McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).
pubmed: 12860187
doi: 10.1016/S1364-6613(03)00134-7
Chen, L. et al. The visual word form area (VWFA) is part of both language and attention circuitry. Nat. Commun. 10, 5601 (2019).
pubmed: 31811149
pmcid: 6898452
doi: 10.1038/s41467-019-13634-z
Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).
pubmed: 9151747
pmcid: 6573547
doi: 10.1523/JNEUROSCI.17-11-04302.1997
McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).
pubmed: 23965119
doi: 10.1162/jocn.1997.9.5.605
Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).
pubmed: 16456083
pmcid: 2678572
doi: 10.1126/science.1119983
Marquardt, K., Ramezanpour, H., Dicke, P. W. & Thier, P. Following eye gaze activates a patch in the posterior temporal cortex that is not part of the human “face patch” system. eNeuro 4, 1–10 (2017).
doi: 10.1523/ENEURO.0317-16.2017
Marciniak, K., Atabaki, A., Dicke, P. W. & Thier, P. Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus. Elife 3, 1–18 (2014).
doi: 10.7554/eLife.03222
Friesen, C. K. & Kingstone, A. The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon. Bull. Rev. 5, 490–495 (1998).
doi: 10.3758/BF03208827
Driver, J. et al. Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6, 509–540 (1999).
doi: 10.1080/135062899394920
Aiello, M. et al. No inherent left and right side in human “mental number line”: evidence from right brain damage. Brain 135, 2492–2505 (2012).
pubmed: 22577222
doi: 10.1093/brain/aws114
Verdon, V., Schwartz, S., Lovblad, K.-O., Hauert, C.-A. & Vuilleumier, P. Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 133, 880–894 (2010).
pubmed: 20028714
doi: 10.1093/brain/awp305
Azouvi, P. et al. Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. J. Neurol. Neurosurg. Psychiatry 73, 160–166 (2002).
pubmed: 12122175
pmcid: 1737990
doi: 10.1136/jnnp.73.2.160
Hillis, A. E. et al. Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J. Neurosci. 25, 3161–3167 (2005).
pubmed: 15788773
pmcid: 6725074
doi: 10.1523/JNEUROSCI.4468-04.2005
Doricchi, F. & Tomaiuolo, F. The anatomy of neglect without hemianopia: a key role for parietal-frontal disconnection? Neuroreport 14, 2239–2243 (2003).
pubmed: 14625455
doi: 10.1097/00001756-200312020-00021
Buxbaum, L. J. et al. Hemispatial neglect: subtypes, neuroanatomy, and disability. Neurology 62, 749–756 (2004).
pubmed: 15007125
doi: 10.1212/01.WNL.0000113730.73031.F4
Heilman, K. M. & Valenstein, E. Frontal lobe neglect in man. Neurology 22, 660–664 (1972).
pubmed: 4673341
doi: 10.1212/WNL.22.6.660
Ringman, J. M., Saver, J. L., Woolson, R. F., Clarke, W. R. & Adams, H. P. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 63, 468–474 (2004).
pubmed: 15304577
doi: 10.1212/01.WNL.0000133011.10689.CE
Bartolomeo, P., Thiebaut de Schotten, M. & Doricchi, F. Left unilateral neglect as a disconnection syndrome. Cereb. Cortex 17, 2479–2490 (2007).
pubmed: 17272263
doi: 10.1093/cercor/bhl181
Thiebaut de Schotten, M. et al. Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb. Cortex 24, 691–706 (2014).
pubmed: 23162045
doi: 10.1093/cercor/bhs351
Thiebaut de Schotten, M. et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309, 2226–2228 (2005).
pubmed: 16195465
doi: 10.1126/science.1116251
Forkel, S. J. et al. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56, 73–84 (2014).
pubmed: 23137651
doi: 10.1016/j.cortex.2012.09.005
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26–49 (2013).
pubmed: 23265839
doi: 10.1016/j.tics.2012.10.011
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
pubmed: 1374953
doi: 10.1016/0166-2236(92)90344-8
Baylis, G. C., Gore, C. L., Dennis Rodriguez, P. & Shisler, R. J. Visual extinction and awareness: the importance of binding dorsal and ventral pathways. Vis. cogn. 8, 359–379 (2001).
doi: 10.1080/13506280143000052
Milner, A. D. How do the two visual streams interact with each other? Exp. Brain Res. 235, 1297–1308 (2017).
pubmed: 28255843
pmcid: 5380689
doi: 10.1007/s00221-017-4917-4
Theys, T., Romero, M. C., van Loon, J. & Janssen, P. Shape representations in the primate dorsal visual stream. Front. Comput. Neurosci. 9, 43 (2015).
pubmed: 25954189
pmcid: 4406065
doi: 10.3389/fncom.2015.00043
Freedman, D. J. & Assad, J. A. Distinct encoding of spatial and nonspatial visual information in parietal cortex. J. Neurosci. 29, 5671–5680 (2009).
pubmed: 19403833
pmcid: 2898938
doi: 10.1523/JNEUROSCI.2878-08.2009
Konen, C. S. & Kastner, S. Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 11, 224–231 (2008).
pubmed: 18193041
doi: 10.1038/nn2036
Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-selective cortex. Elife 6, 1–19 (2017).
Nelissen, K. et al. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31, 3743–3756 (2011).
pubmed: 21389229
pmcid: 3099268
doi: 10.1523/JNEUROSCI.4803-10.2011
van Polanen, V. & Davare, M. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 79, 186–191 (2015).
pubmed: 26169317
pmcid: 4678292
doi: 10.1016/j.neuropsychologia.2015.07.010
Cloutman, L. L. Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang. 127, 251–263 (2013).
pubmed: 22968092
doi: 10.1016/j.bandl.2012.08.003
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
pubmed: 31492945
doi: 10.1038/s41583-019-0212-7
Ptak, R. & Schnider, A. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Neuropsychologia 49, 3063–3070 (2011).
pubmed: 21787795
doi: 10.1016/j.neuropsychologia.2011.07.008
Dragone, A., Lasaponara, S., Silvetti, M., Macaluso, E. & Doricchi, F. Selective reorienting response of the left hemisphere to invalid visual targets in the right side of space: relevance for the spatial neglect syndrome. Cortex 65, 31–35 (2015).
pubmed: 25618327
doi: 10.1016/j.cortex.2014.12.009
Vandenberghe, R., Molenberghs, P. & Gillebert, C. R. Spatial attention deficits in humans: the critical role of superior compared to inferior parietal lesions. Neuropsychologia 50, 1092–1103 (2012).
pubmed: 22266260
doi: 10.1016/j.neuropsychologia.2011.12.016
Fletcher, P. C. et al. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 57, 109–128 (1995).
pubmed: 8556839
doi: 10.1016/0010-0277(95)00692-R
Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind. Neuroimage 19, 1835–1842 (2003).
pubmed: 12948738
doi: 10.1016/S1053-8119(03)00230-1
Praß, M., Grimsen, C. & Fahle, M. Functional modulation of contralateral bias in early and object-selective areas after stroke of the occipital ventral cortices. Neuropsychologia 95, 73–85 (2017).
pubmed: 27956263
doi: 10.1016/j.neuropsychologia.2016.12.014
Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using an SPM toolbox [abstract]. NeuroImage 16, abstract 497 (2002).
Tournier, J.-D., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).
doi: 10.1002/ima.22005
Takemura, H. et al. A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26, 2205–2214 (2016).
pubmed: 25828567
doi: 10.1093/cercor/bhv064
Yeatman, J. D. et al. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl Acad. Sci. USA 111, E5214–E5223 (2014).
pubmed: 25404310
doi: 10.1073/pnas.1418503111
pmcid: 4260539
Tournier, J.-D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472 (2007).
pubmed: 17379540
doi: 10.1016/j.neuroimage.2007.02.016
Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. & Feldman, H. M. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7, e49790 (2012).
pubmed: 23166771
pmcid: 3498174
doi: 10.1371/journal.pone.0049790
Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).
pubmed: 18438885
pmcid: 6870962
doi: 10.1002/hbm.20579
Mars, R. B. et al. The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct. Funct. 221, 4059–4071 (2016).
pubmed: 26627483
doi: 10.1007/s00429-015-1146-0