The human endogenous attentional control network includes a ventro-temporal cortical node.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 01 2021
Historique:
received: 16 02 2020
accepted: 07 12 2020
entrez: 16 1 2021
pubmed: 17 1 2021
medline: 30 1 2021
Statut: epublish

Résumé

Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.

Identifiants

pubmed: 33452252
doi: 10.1038/s41467-020-20583-5
pii: 10.1038/s41467-020-20583-5
pmc: PMC7810878
doi:

Types de publication

Journal Article Observational Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

360

Subventions

Organisme : NIBIB NIH HHS
ID : R01 EB029272
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH120288
Pays : United States

Références

Goldstein, B., Chun, M. M. & Wolfe, J. M. “Visual attention” in Blackwell Handbook of Perception, (ed. Goldstein, B. E.) pp. 272–310 (Blackwell Publishers Ltd., Oxford, UK, 2001).
Heilman, K. M. & Valenstein E. Frontal lobe neglect in man. Neurology 22, 660–664 (1972).
pubmed: 4673341 doi: 10.1212/WNL.22.6.660
Heilman, K. M., Watson, R. T., Bower, D. & Valenstein, E. Right hemisphere dominance for attention. Rev. Neurol. 139, 15–17 (1983).
pubmed: 6407086
Vallar, G. & Perani, D. The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622 (1986).
pubmed: 3785649 doi: 10.1016/0028-3932(86)90001-1
Mort, D. J. et al. The anatomy of visual neglect. Brain 126, 1986–1997 (2003).
pubmed: 12821519 doi: 10.1093/brain/awg200
Daffner, K. R., Ahern, G. L., Weintraub, S. & Mesulam, M. M. Dissociated neglect behavior following sequential strokes in the right hemisphere. Ann. Neurol. 28, 97–101 (1990).
pubmed: 2375643 doi: 10.1002/ana.410280119
Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol. 243, 652–657 (1996).
pubmed: 8892067 doi: 10.1007/BF00878662
Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).
pubmed: 10845067 doi: 10.1146/annurev.neuro.23.1.315
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).
pubmed: 18466742 pmcid: 2441869 doi: 10.1016/j.neuron.2008.04.017
Stemmann, H. & Freiwald, W. A. Attentive motion discrimination recruits an area in inferotemporal cortex. J. Neurosci. 36, 11918–11928 (2016).
pubmed: 27881778 pmcid: 5125246 doi: 10.1523/JNEUROSCI.1888-16.2016
Bogadhi, A. R., Bollimunta, A., Leopold, D. A. & Krauzlis, R. J. Brain regions modulated during covert visual attention in the macaque. Sci. Rep. 8, 15237 (2018).
pubmed: 30323289 pmcid: 6189039 doi: 10.1038/s41598-018-33567-9
Caspari, N., Janssens, T., Mantini, D., Vandenberghe, R. & Vanduffel, W. Covert shifts of spatial attention in the macaque monkey. J. Neurosci. 35, 7695–7714 (2015).
pubmed: 25995460 pmcid: 4438122 doi: 10.1523/JNEUROSCI.4383-14.2015
Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).
pubmed: 20192813 pmcid: 3683564 doi: 10.1146/annurev-neuro-060909-152823
Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).
pubmed: 9461214 doi: 10.1038/35135
Thompson, K. G. & Bichot, N. P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).
pubmed: 15581711
Stemmann, H. & Freiwald, W. A. Evidence for an attentional priority map in inferotemporal cortex. Proc. Natl Acad. Sci. USA 116, 23797–23805 (2019).
pubmed: 31685625 doi: 10.1073/pnas.1821866116 pmcid: 6876153
Fecteau, J. H. & Munoz, D. P. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).
pubmed: 16843702 doi: 10.1016/j.tics.2006.06.011
Bogadhi, A. R., Bollimunta, A., Leopold, D. A. & Krauzlis, R. J. Spatial attention deficits are causally linked to an area in macaque temporal cortex. Curr. Biol. 29, 726–736.e4 (2019).
pubmed: 30773369 pmcid: 6401289 doi: 10.1016/j.cub.2019.01.028
Sani, I., McPherson, B. C., Stemmann, H., Pestilli, F. & Freiwald, W. A. Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife 8, 1–21 (2019).
doi: 10.7554/eLife.40520
Doricchi, F., Macci, E., Silvetti, M. & Macaluso, E. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb. Cortex 20, 1574–1585 (2010).
pubmed: 19846472 doi: 10.1093/cercor/bhp215
Geng, J. J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620 (2013).
pubmed: 23999082 pmcid: 3878596 doi: 10.1016/j.neubiorev.2013.08.010
Macaluso, E. & Doricchi, F. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy. Front. Hum. Neurosci. 7, 685 (2013).
pubmed: 24155707 pmcid: 3800774 doi: 10.3389/fnhum.2013.00685
Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events Philos. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).
doi: 10.1098/rstb.1999.0482
Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci. 2, 87–97 (1998).
pubmed: 21227084 doi: 10.1016/S1364-6613(98)01145-0
Watson, R. T., Valenstein, E., Day, A. & Heilman, K. M. Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. Arch. Neurol. 51, 1014–1021 (1994).
pubmed: 7944999 doi: 10.1001/archneur.1994.00540220060015
Shulman, G. L., Astafiev, S. V. & McAvoy, M. P., d Avossa, G. & Corbetta, M.Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb. Cortex 17, 2625–2633 (2007).
pubmed: 17264254 doi: 10.1093/cercor/bhl170
Patel, G. H. et al. Functional evolution of new and expanded attention networks in humans. Proc. Natl Acad. Sci. USA 112, 9454–9459 (2015).
pubmed: 26170314 doi: 10.1073/pnas.1420395112 pmcid: 4522817
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).
pubmed: 11994752 doi: 10.1038/nrn755
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).
pubmed: 16788060 doi: 10.1073/pnas.0604187103 pmcid: 1480402
Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vis. Res. 41, 1359–1378 (2001).
pubmed: 11322980 doi: 10.1016/S0042-6989(01)00045-1
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579 pmcid: 4990127 doi: 10.1038/nature18933
Kolster, H., Peeters, R. & Orban, G. A. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J. Neurosci. 30, 9801–9820 (2010).
pubmed: 20660263 pmcid: 6632824 doi: 10.1523/JNEUROSCI.2069-10.2010
Van Essen, D. C. & Glasser, M. F. Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99, 640–663 (2018).
pubmed: 30138588 pmcid: 6149530 doi: 10.1016/j.neuron.2018.07.002
Shulman, G. L. et al. Quantitative analysis of attention and detection signals during visual search. J. Neurophysiol. 90, 3384–3397 (2003).
pubmed: 12917383 doi: 10.1152/jn.00343.2003
Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235–241 (1998).
pubmed: 10195149 doi: 10.1038/681
Orban, G. A., Zhu, Q. & Vanduffel, W. The transition in the ventral stream from feature to real-world entity representations. Front. Psychol. 5, 695 (2014).
pubmed: 25071663 pmcid: 4079243 doi: 10.3389/fpsyg.2014.00695
Avesani, P. et al. The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci. Data 6, 69 (2019).
pubmed: 31123325 pmcid: 6533280 doi: 10.1038/s41597-019-0073-y
Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).
pubmed: 23702418 doi: 10.1016/j.neuroimage.2013.05.057
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
pubmed: 22366334 doi: 10.1016/j.neuroimage.2012.02.018
Takemura, H., Caiafa, C. F., Wandell, B. A. & Pestilli, F. Ensemble tractography. PLoS Comput. Biol. 12, e1004692 (2016).
pubmed: 26845558 pmcid: 4742469 doi: 10.1371/journal.pcbi.1004692
Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N. & Wandell, B. A. Evaluation and statistical inference for human connectomes. Nat. Methods 11, 1058–1063 (2014).
pubmed: 25194848 pmcid: 4180802 doi: 10.1038/nmeth.3098
Caiafa, C. F. & Pestilli, F. Multidimensional encoding of brain connectomes. Sci. Rep. 7, 11491 (2017).
pubmed: 28904382 pmcid: 5597641 doi: 10.1038/s41598-017-09250-w
Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).
pubmed: 29116093 pmcid: 5677006 doi: 10.1038/s41467-017-01285-x
Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).
pubmed: 16201007 pmcid: 1239902 doi: 10.1371/journal.pcbi.0010042
Rubner, Y., Tomasi, C. & Guibas, L. J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000).
doi: 10.1023/A:1026543900054
Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).
pubmed: 8946355 doi: 10.1002/mrm.1910360612
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15, 435–455 (2002).
pubmed: 12489094 doi: 10.1002/nbm.782
Le Bihan, D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 8, 375–386 (1995).
pubmed: 8739274 doi: 10.1002/nbm.1940080711
Thiebaut de Schotten, M. et al. A lateralized brain network for visuospatial attention. Nat. Neurosci. 14, 1245–1246 (2011).
pubmed: 21926985 doi: 10.1038/nn.2905
Bullock, D. et al. Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct. Funct. 224, 2631–2660 (2019).
pubmed: 31342157 doi: 10.1007/s00429-019-01907-8
Umarova, R. M. et al. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb. Cortex 20, 121–129 (2010).
pubmed: 19406904 doi: 10.1093/cercor/bhp086
Maunsell, J. H. R. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).
pubmed: 16697058 doi: 10.1016/j.tins.2006.04.001
O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).
pubmed: 9136768 doi: 10.1016/S0896-6273(00)80300-1
Wojciulik, E., Kanwisher, N. & Driver, J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J. Neurophysiol. 79, 1574–1578 (1998).
pubmed: 9497433 doi: 10.1152/jn.1998.79.3.1574
Chawla, D., Rees, G. & Friston, K. J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 2, 671–676 (1999).
pubmed: 10404202 doi: 10.1038/10230
Liu, T., Slotnick, S. D., Serences, J. T. & Yantis, S. Cortical mechanisms of feature-based attentional control. Cereb. Cortex 13, 1334–1343 (2003).
pubmed: 14615298 doi: 10.1093/cercor/bhg080
Treue, S. & Martínez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).
pubmed: 10376597 doi: 10.1038/21176
McAdams, C. J. & Maunsell, J. H. Attention to both space and feature modulates neuronal responses in macaque area V4. J. Neurophysiol. 83, 1751–1755 (2000).
pubmed: 10712494 doi: 10.1152/jn.2000.83.3.1751
Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).
pubmed: 7351125 doi: 10.1016/0010-0285(80)90005-5
Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).
pubmed: 10204546 doi: 10.1038/7286
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).
pubmed: 10700263 doi: 10.1038/73009
Sapir, A., d Avossa, G., McAvoy, M., Shulman, G. L. & Corbetta, M. Brain signals for spatial attention predict performance in a motion discrimination task. Proc. Natl Acad. Sci. USA 102, 17810–17815 (2005).
pubmed: 16306268 doi: 10.1073/pnas.0504678102 pmcid: 1308888
Ester, E. F., Sutterer, D. W., Serences, J. T. & Awh, E. Feature-selective attentional modulations in human frontoparietal cortex. J. Neurosci. 36, 8188–8199 (2016).
pubmed: 27488638 pmcid: 4971365 doi: 10.1523/JNEUROSCI.3935-15.2016
Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vis. Res. 41, 1409–1422 (2001).
pubmed: 11322983 doi: 10.1016/S0042-6989(01)00073-6
Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).
pubmed: 11520991 doi: 10.1126/science.1061133
Lafer-Sousa, R., Conway, B. R. & Kanwisher, N. G. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J. Neurosci. 36, 1682–1697 (2016).
pubmed: 26843649 pmcid: 4737777 doi: 10.1523/JNEUROSCI.3164-15.2016
Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl Acad. Sci. USA 92, 8135–8139 (1995).
pubmed: 7667258 doi: 10.1073/pnas.92.18.8135 pmcid: 41110
Conway, B. R., Moeller, S. & Tsao, D. Y. Specialized color modules in macaque extrastriate cortex. Neuron 56, 560–573 (2007).
pubmed: 17988638 doi: 10.1016/j.neuron.2007.10.008 pmcid: 8162777
Conway, B. R. & Tsao, D. Y. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proc. Natl Acad. Sci. USA 106, 18034–18039 (2009).
pubmed: 19805195 doi: 10.1073/pnas.0810943106 pmcid: 2764907
McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).
pubmed: 12860187 doi: 10.1016/S1364-6613(03)00134-7
Chen, L. et al. The visual word form area (VWFA) is part of both language and attention circuitry. Nat. Commun. 10, 5601 (2019).
pubmed: 31811149 pmcid: 6898452 doi: 10.1038/s41467-019-13634-z
Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).
pubmed: 9151747 pmcid: 6573547 doi: 10.1523/JNEUROSCI.17-11-04302.1997
McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).
pubmed: 23965119 doi: 10.1162/jocn.1997.9.5.605
Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).
pubmed: 16456083 pmcid: 2678572 doi: 10.1126/science.1119983
Marquardt, K., Ramezanpour, H., Dicke, P. W. & Thier, P. Following eye gaze activates a patch in the posterior temporal cortex that is not part of the human “face patch” system. eNeuro 4, 1–10 (2017).
doi: 10.1523/ENEURO.0317-16.2017
Marciniak, K., Atabaki, A., Dicke, P. W. & Thier, P. Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus. Elife 3, 1–18 (2014).
doi: 10.7554/eLife.03222
Friesen, C. K. & Kingstone, A. The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon. Bull. Rev. 5, 490–495 (1998).
doi: 10.3758/BF03208827
Driver, J. et al. Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6, 509–540 (1999).
doi: 10.1080/135062899394920
Aiello, M. et al. No inherent left and right side in human “mental number line”: evidence from right brain damage. Brain 135, 2492–2505 (2012).
pubmed: 22577222 doi: 10.1093/brain/aws114
Verdon, V., Schwartz, S., Lovblad, K.-O., Hauert, C.-A. & Vuilleumier, P. Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 133, 880–894 (2010).
pubmed: 20028714 doi: 10.1093/brain/awp305
Azouvi, P. et al. Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. J. Neurol. Neurosurg. Psychiatry 73, 160–166 (2002).
pubmed: 12122175 pmcid: 1737990 doi: 10.1136/jnnp.73.2.160
Hillis, A. E. et al. Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J. Neurosci. 25, 3161–3167 (2005).
pubmed: 15788773 pmcid: 6725074 doi: 10.1523/JNEUROSCI.4468-04.2005
Doricchi, F. & Tomaiuolo, F. The anatomy of neglect without hemianopia: a key role for parietal-frontal disconnection? Neuroreport 14, 2239–2243 (2003).
pubmed: 14625455 doi: 10.1097/00001756-200312020-00021
Buxbaum, L. J. et al. Hemispatial neglect: subtypes, neuroanatomy, and disability. Neurology 62, 749–756 (2004).
pubmed: 15007125 doi: 10.1212/01.WNL.0000113730.73031.F4
Heilman, K. M. & Valenstein, E. Frontal lobe neglect in man. Neurology 22, 660–664 (1972).
pubmed: 4673341 doi: 10.1212/WNL.22.6.660
Ringman, J. M., Saver, J. L., Woolson, R. F., Clarke, W. R. & Adams, H. P. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 63, 468–474 (2004).
pubmed: 15304577 doi: 10.1212/01.WNL.0000133011.10689.CE
Bartolomeo, P., Thiebaut de Schotten, M. & Doricchi, F. Left unilateral neglect as a disconnection syndrome. Cereb. Cortex 17, 2479–2490 (2007).
pubmed: 17272263 doi: 10.1093/cercor/bhl181
Thiebaut de Schotten, M. et al. Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb. Cortex 24, 691–706 (2014).
pubmed: 23162045 doi: 10.1093/cercor/bhs351
Thiebaut de Schotten, M. et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309, 2226–2228 (2005).
pubmed: 16195465 doi: 10.1126/science.1116251
Forkel, S. J. et al. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56, 73–84 (2014).
pubmed: 23137651 doi: 10.1016/j.cortex.2012.09.005
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26–49 (2013).
pubmed: 23265839 doi: 10.1016/j.tics.2012.10.011
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
pubmed: 1374953 doi: 10.1016/0166-2236(92)90344-8
Baylis, G. C., Gore, C. L., Dennis Rodriguez, P. & Shisler, R. J. Visual extinction and awareness: the importance of binding dorsal and ventral pathways. Vis. cogn. 8, 359–379 (2001).
doi: 10.1080/13506280143000052
Milner, A. D. How do the two visual streams interact with each other? Exp. Brain Res. 235, 1297–1308 (2017).
pubmed: 28255843 pmcid: 5380689 doi: 10.1007/s00221-017-4917-4
Theys, T., Romero, M. C., van Loon, J. & Janssen, P. Shape representations in the primate dorsal visual stream. Front. Comput. Neurosci. 9, 43 (2015).
pubmed: 25954189 pmcid: 4406065 doi: 10.3389/fncom.2015.00043
Freedman, D. J. & Assad, J. A. Distinct encoding of spatial and nonspatial visual information in parietal cortex. J. Neurosci. 29, 5671–5680 (2009).
pubmed: 19403833 pmcid: 2898938 doi: 10.1523/JNEUROSCI.2878-08.2009
Konen, C. S. & Kastner, S. Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 11, 224–231 (2008).
pubmed: 18193041 doi: 10.1038/nn2036
Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-selective cortex. Elife 6, 1–19 (2017).
Nelissen, K. et al. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31, 3743–3756 (2011).
pubmed: 21389229 pmcid: 3099268 doi: 10.1523/JNEUROSCI.4803-10.2011
van Polanen, V. & Davare, M. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 79, 186–191 (2015).
pubmed: 26169317 pmcid: 4678292 doi: 10.1016/j.neuropsychologia.2015.07.010
Cloutman, L. L. Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang. 127, 251–263 (2013).
pubmed: 22968092 doi: 10.1016/j.bandl.2012.08.003
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
pubmed: 31492945 doi: 10.1038/s41583-019-0212-7
Ptak, R. & Schnider, A. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Neuropsychologia 49, 3063–3070 (2011).
pubmed: 21787795 doi: 10.1016/j.neuropsychologia.2011.07.008
Dragone, A., Lasaponara, S., Silvetti, M., Macaluso, E. & Doricchi, F. Selective reorienting response of the left hemisphere to invalid visual targets in the right side of space: relevance for the spatial neglect syndrome. Cortex 65, 31–35 (2015).
pubmed: 25618327 doi: 10.1016/j.cortex.2014.12.009
Vandenberghe, R., Molenberghs, P. & Gillebert, C. R. Spatial attention deficits in humans: the critical role of superior compared to inferior parietal lesions. Neuropsychologia 50, 1092–1103 (2012).
pubmed: 22266260 doi: 10.1016/j.neuropsychologia.2011.12.016
Fletcher, P. C. et al. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 57, 109–128 (1995).
pubmed: 8556839 doi: 10.1016/0010-0277(95)00692-R
Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind. Neuroimage 19, 1835–1842 (2003).
pubmed: 12948738 doi: 10.1016/S1053-8119(03)00230-1
Praß, M., Grimsen, C. & Fahle, M. Functional modulation of contralateral bias in early and object-selective areas after stroke of the occipital ventral cortices. Neuropsychologia 95, 73–85 (2017).
pubmed: 27956263 doi: 10.1016/j.neuropsychologia.2016.12.014
Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using an SPM toolbox [abstract]. NeuroImage 16, abstract 497 (2002).
Tournier, J.-D., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).
doi: 10.1002/ima.22005
Takemura, H. et al. A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26, 2205–2214 (2016).
pubmed: 25828567 doi: 10.1093/cercor/bhv064
Yeatman, J. D. et al. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl Acad. Sci. USA 111, E5214–E5223 (2014).
pubmed: 25404310 doi: 10.1073/pnas.1418503111 pmcid: 4260539
Tournier, J.-D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472 (2007).
pubmed: 17379540 doi: 10.1016/j.neuroimage.2007.02.016
Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. & Feldman, H. M. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7, e49790 (2012).
pubmed: 23166771 pmcid: 3498174 doi: 10.1371/journal.pone.0049790
Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).
pubmed: 18438885 pmcid: 6870962 doi: 10.1002/hbm.20579
Mars, R. B. et al. The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct. Funct. 221, 4059–4071 (2016).
pubmed: 26627483 doi: 10.1007/s00429-015-1146-0

Auteurs

Ilaria Sani (I)

Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA. ilaria.sani@unige.ch.
Laboratory of Neurology & Imaging of Cognition, University of Geneva, Chemin de mines 9, 1202, Geneva, CH, Switzerland. ilaria.sani@unige.ch.

Heiko Stemmann (H)

Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334, Bremen, Germany.

Bradley Caron (B)

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

Daniel Bullock (D)

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

Torsten Stemmler (T)

Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334, Bremen, Germany.

Manfred Fahle (M)

Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334, Bremen, Germany.

Franco Pestilli (F)

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA.

Winrich A Freiwald (WA)

Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA. wfreiwald@rockefeller.edu.
Center for Brains, Minds & Machines, Cambridge, MA, USA. wfreiwald@rockefeller.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH