Carbomer-based adjuvant elicits CD8 T-cell immunity by inducing a distinct metabolic state in cross-presenting dendritic cells.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
01 2021
Historique:
received: 05 06 2020
accepted: 16 11 2020
revised: 27 01 2021
pubmed: 15 1 2021
medline: 27 4 2021
entrez: 14 1 2021
Statut: epublish

Résumé

There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ's effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1β and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.

Identifiants

pubmed: 33444400
doi: 10.1371/journal.ppat.1009168
pii: PPATHOGENS-D-20-01207
pmc: PMC7840022
doi:

Substances chimiques

ATP Binding Cassette Transporter, Subfamily B, Member 2 0
Acrylic Resins 0
Adjuvants, Immunologic 0
Klf2 protein, mouse 0
Kruppel-Like Transcription Factors 0
Tap1 protein, mouse 0
carbomer 0
Cybb protein, mouse EC 1.6.3.-
NADPH Oxidase 2 EC 1.6.3.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1009168

Subventions

Organisme : NIAID NIH HHS
ID : U01 AI124299
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014520
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM135066
Pays : United States
Organisme : NIH HHS
ID : S10 OD018039
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM108538
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA188034
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA205101
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI149793
Pays : United States

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Sci Rep. 2016 Feb 24;6:22064
pubmed: 26907999
Immunity. 2004 Aug;21(2):155-65
pubmed: 15308097
Cell. 2011 Dec 9;147(6):1355-68
pubmed: 22153078
Front Immunol. 2019 Jul 02;10:1451
pubmed: 31338091
Nat Med. 2011 Oct 11;17(10):1194-5
pubmed: 21988996
J Exp Med. 1976 May 1;143(5):1283-8
pubmed: 1083422
Clin Vaccine Immunol. 2015 Sep;22(9):1004-12
pubmed: 26135973
J Immunol. 2014 Apr 1;192(7):3259-68
pubmed: 24610009
Curr Opin Mol Ther. 2009 Feb;11(1):72-80
pubmed: 19169962
Blood. 2010 Jun 10;115(23):4742-9
pubmed: 20351312
Autoimmune Dis. 2012;2012:745962
pubmed: 23050124
Nat Immunol. 2008 Aug;9(8):847-56
pubmed: 18604214
Pharmazie. 1993 Apr;48(4):285-7
pubmed: 8321879
Semin Immunol. 2018 Oct;39:14-21
pubmed: 29801750
Cell Metab. 2017 Sep 5;26(3):558-567.e5
pubmed: 28877459
J Med Primatol. 2015 Oct;44(5):275-85
pubmed: 26075700
Science. 2003 Feb 28;299(5611):1400-3
pubmed: 12610307
J Immunol. 2005 Jul 1;175(1):196-200
pubmed: 15972648
Nat Commun. 2017 May 30;8:15620
pubmed: 28555668
Anal Biochem. 2009 Apr 15;387(2):294-302
pubmed: 19454251
Methods Mol Biol. 2016;1390:273-85
pubmed: 26803635
Blood. 2012 Aug 16;120(7):1422-31
pubmed: 22786879
Nature. 2013 Apr 11;496(7444):238-42
pubmed: 23535595
PLoS Pathog. 2016 Dec 20;12(12):e1006064
pubmed: 27997610
Cell. 1992 Dec 24;71(7):1205-14
pubmed: 1473153
PLoS One. 2014 Sep 08;9(9):e107188
pubmed: 25198773
PLoS Pathog. 2014 Jan;10(1):e1003861
pubmed: 24391507
Nat Rev Immunol. 2002 Sep;2(9):706-13
pubmed: 12209139
Nat Immunol. 2013 Jun;14(6):543-53
pubmed: 23644505
Mol Cells. 2016 Oct;39(10):734-741
pubmed: 27788572
J Control Release. 2014 Sep 28;190:563-79
pubmed: 24998942
Chem Phys Lipids. 2008 May;153(1):24-33
pubmed: 18346461
Nat Med. 2010 Aug;16(8):880-6
pubmed: 20622859
Immunity. 2009 Aug 21;31(2):232-44
pubmed: 19699172
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):105-10
pubmed: 16373502
Cells. 2019 Dec 18;9(1):
pubmed: 31861356
Nat Immunol. 2013 Dec;14(12):1285-93
pubmed: 24162775
J Immunol. 2018 Nov 15;201(10):3129-3139
pubmed: 30322963
Cancer Res. 2013 Oct 15;73(20):6164-74
pubmed: 24130112
Int J Oncol. 2010 Dec;37(6):1483-93
pubmed: 21042717
Bio Protoc. 2012 Dec 20;2(24):e305
pubmed: 27030824
Nat Rev Immunol. 2015 Jan;15(1):18-29
pubmed: 25534620
Nat Rev Immunol. 2010 Oct;10(10):688-98
pubmed: 20847744
Am J Clin Nutr. 2006 Dec;84(6):1277-89
pubmed: 17158407
PLoS Pathog. 2010 Feb 26;6(2):e1000661
pubmed: 20195505
Front Immunol. 2020 Feb 18;11:131
pubmed: 32132994
Nat Commun. 2016 Nov 07;7:13324
pubmed: 27819292
Science. 2010 Jun 11;328(5984):1394-8
pubmed: 20538950
J Immunol. 1996 Jun 1;156(11):4182-90
pubmed: 8666786
Science. 2007 Apr 27;316(5824):612-6
pubmed: 17463291
Clin Vaccine Immunol. 2014 Jun;21(6):886-97
pubmed: 24789797
Int Immunol. 2005 Jan;17(1):45-53
pubmed: 15546887
Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6020-4
pubmed: 1378619
J Immunol. 2014 Sep 15;193(6):2821-30
pubmed: 25108022
J Travel Med. 2016 Jul 04;23(5):
pubmed: 27378369
Lancet. 2008 Jul 12;372(9633):164-75
pubmed: 18620952
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3029-34
pubmed: 18272486
Cell. 1998 Feb 20;92(4):535-45
pubmed: 9491894
J Immunol Methods. 2016 Apr;431:11-21
pubmed: 26851520
J Immunol. 2008 Apr 1;180(7):4697-705
pubmed: 18354193
Epidemiol Infect. 2004 Oct;132(5):939-46
pubmed: 15473158
Nat Immunol. 2014 Apr;15(4):323-32
pubmed: 24562310
Nat Immunol. 2011 Jun;12(6):509-17
pubmed: 21739679
Cancer Res. 1995 Apr 15;55(8):1741-7
pubmed: 7536130
Cell Rep. 2015 May 12;11(6):957-966
pubmed: 25937283
J Lipid Res. 1998 Aug;39(8):1529-42
pubmed: 9717713
Int Immunol. 2009 Jul;21(7):871-9
pubmed: 19505890
J Biol Chem. 2004 Apr 23;279(17):16971-9
pubmed: 14966134
Curr Opin Immunol. 2017 Jun;46:89-96
pubmed: 28528219
Nat Commun. 2018 Jun 25;9(1):2463
pubmed: 29941886
J Immunol. 2001 Oct 1;167(7):3577-84
pubmed: 11564769
Vaccine. 2016 Apr 27;34(19):2188-96
pubmed: 27005810
Cell. 2006 Jul 14;126(1):205-18
pubmed: 16839887
Infect Immun. 1993 Mar;61(3):1113-6
pubmed: 8432593
Nat Commun. 2017 Dec 14;8(1):2122
pubmed: 29242535
Annu Rev Immunol. 2000;18:275-308
pubmed: 10837060
J Immunol. 2018 Jun 1;200(11):3729-3738
pubmed: 29678951
Front Immunol. 2019 Apr 25;10:775
pubmed: 31073300
Int J Nanomedicine. 2019 May 13;14:3503-3516
pubmed: 31190807
Science. 1995 Jan 13;267(5195):243-6
pubmed: 7809629
Science. 1994 May 13;264(5161):961-5
pubmed: 7513904
J Immunol. 1994 Oct 1;153(7):3116-22
pubmed: 7726898
J Immunol. 2016 May 15;196(10):4204-13
pubmed: 27059596
Vaccine. 2004 Jun 2;22(17-18):2103-5
pubmed: 15149765
Cell Rep. 2018 Nov 13;25(7):1800-1815.e4
pubmed: 30428349
Mol Immunol. 2019 Feb;106:159-169
pubmed: 30623816
Cytometry A. 2010 Aug;77(8):733-42
pubmed: 20653013
J Immunol. 2014 Mar 15;192(6):2920-31
pubmed: 24554775
Immunity. 2011 May 27;34(5):715-28
pubmed: 21565532

Auteurs

Woojong Lee (W)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Brock Kingstad-Bakke (B)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Brett Paulson (B)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Autumn Larsen (A)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Katherine Overmyer (K)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Chandranaik B Marinaik (CB)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Kelly Dulli (K)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Randall Toy (R)

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University and The Parker H. Petit Institute for Bioengineering and Biosciences, Center for ImmunoEngineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

Gabriela Vogel (G)

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University and The Parker H. Petit Institute for Bioengineering and Biosciences, Center for ImmunoEngineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

Katherine P Mueller (KP)

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Kelsey Tweed (K)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Alex J Walsh (AJ)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Jason Russell (J)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Krishanu Saha (K)

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Leticia Reyes (L)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Melissa C Skala (MC)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

John-Demian Sauer (JD)

Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Dmitry M Shayakhmetov (DM)

Lowance Center for Human Immunology, Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America.

Joshua Coon (J)

Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Krishnendu Roy (K)

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University and The Parker H. Petit Institute for Bioengineering and Biosciences, Center for ImmunoEngineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

M Suresh (M)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH