Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
13
06
2020
accepted:
22
10
2020
pubmed:
13
1
2021
medline:
27
2
2021
entrez:
12
1
2021
Statut:
ppublish
Résumé
The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing G
Identifiants
pubmed: 33432133
doi: 10.1038/s41559-020-01356-1
pii: 10.1038/s41559-020-01356-1
pmc: PMC7611595
mid: EMS118327
doi:
Substances chimiques
Opsins
0
Banques de données
Dryad
['10.5061/dryad.73n5tb2vv']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
204-218Subventions
Organisme : European Research Council
ID : 337011
Pays : International
Organisme : European Research Council
ID : 819952
Pays : International
Organisme : Austrian Science Fund FWF
ID : F 7806
Pays : Austria
Commentaires et corrections
Type : CommentIn
Références
Korringa, P. Relations between the moon and periodicity in the breeding of marine animals. Ecol. Monogr. 17, 347–381 (1947).
doi: 10.2307/1948665
Numata, H. & Helm, B. Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (Springer, 2014).
Tessmar-Raible, K., Raible, F. & Arboleda, E. Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172 (2011).
pubmed: 21254149
pmcid: 3182551
doi: 10.1002/bies.201000096
Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019).
pubmed: 31488683
doi: 10.1126/science.aax0110
Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).
pubmed: 29040576
doi: 10.1093/icb/icx119
Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar. Ecol. Prog. Ser. 454, 119–133 (2012).
doi: 10.3354/meps09520
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).
doi: 10.1111/j.1365-2486.2010.02165.x
Monecke, S. et al. Circannual phase response curves to short and long photoperiod in the European hamster. J. Biol. Rhythms 24, 413–426 (2009).
pubmed: 19755586
doi: 10.1177/0748730409344502
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
pubmed: 27362222
doi: 10.1038/nature18608
Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
pubmed: 14668864
doi: 10.1038/nature02164
Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).
pubmed: 15318219
doi: 10.1038/nature02808
Soreide, J. E., Leu, E., Berge, J., Graeve, M. & Falk-Petersen, S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16, 3154–3163 (2010).
Häfker, N. S. & Tessmar-Raible, K. Rhythms of behavior: are the times changin’? Curr. Opin. Neurobiol. 60, 55–66 (2020).
pubmed: 31812940
doi: 10.1016/j.conb.2019.10.005
Schiesari, L., Kyriacou, C. P. & Costa, R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett. 585, 1450–1460 (2011).
pubmed: 21354417
doi: 10.1016/j.febslet.2011.02.026
Collins, B. H., Rosato, E. & Kyriacou, C. P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl Acad. Sci. USA 101, 1945–1950 (2004).
pubmed: 14766972
doi: 10.1073/pnas.0308240100
pmcid: 357032
Tataroglu, O. & Emery, P. Studying circadian rhythms in Drosophila melanogaster. Methods 68, 140–150 (2014).
pubmed: 24412370
pmcid: 4049855
doi: 10.1016/j.ymeth.2014.01.001
Hegazi, S. et al. A symphony of signals: intercellular and intracellular signaling mechanisms underlying circadian timekeeping in mice and flies. Int. J. Mol. Sci. 20, 2363 (2019).
pmcid: 6540063
doi: 10.3390/ijms20092363
Hastings, M. H., Maywood, E. S. & Brancaccio, M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology (Basel) 8, 13 (2019).
Dardente, H., Wood, S., Ebling, F. & de Miera, C. S. An integrative view of mammalian seasonal neuroendocrinology. J. Neuroendocrinol. 31, e12729 (2019).
pubmed: 31059174
doi: 10.1111/jne.12729
Ranzi, S. Ricerche sulla biologia sessuale degli Anellidi. Pubbl. Staz. Zool. Napoli 11, 271–292 (1931).
Ranzi, S. Maturita sessuale degli Anellidi e fasi lunari. Boll. Soc. Ital. Biol. Sper. 6, 18 (1931).
Zantke, J. et al. Circadian and circalunar clock interactions in a marine annelid. Cell Rep. 5, 99–113 (2013).
pubmed: 24075994
pmcid: 3913041
doi: 10.1016/j.celrep.2013.08.031
Zantke, J., Oberlerchner, H. & Tessmar-Raible, K. in Annual, Lunar and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (eds Numata, H. & Helm, B.) (Springer Japan, 2015).
Fischer, A. & Dorresteijn, A. W. C. The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 3, 314–325 (2004).
doi: 10.1002/bies.10409
Zantke, J., Bannister, S., Veedin Rajan, V. B., Raible, F. & Tessmar-Raible, K. Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197, 9–31 (2014).
doi: 10.1534/genetics.112.148254
Gambi, M. C., Lorenti, M., Russo, G. F., Scipione, M. B. & Zupo, V. Depth and seasonal distribution of some groups of the vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. Mar. Ecol. 13, 17–39 (1992).
doi: 10.1111/j.1439-0485.1992.tb00337.x
Somaschini, A. et al. Characterization and cartography of some Mediterranean soft-bottom benthic communities (Ligurian Sea, Italy). Sci. Mar. 62, 27–36 (1998).
doi: 10.3989/scimar.1998.62n1-227
Galparsoro, I. et al. in Seafloor Geomorphology as Benthic Habitat (eds Harris, P. T. & Baker, E. K.) 493–507 (Elsevier, 2012).
Ribera d’Alcalà, M. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).
doi: 10.3989/scimar.2004.68s165
Hut, R. A., Paolucci, S., Dor, R., Kyriacou, C. P. & Daan, S. Latitudinal clines: an evolutionary view on biological rhythms. Proc. R. Soc. B Biol. Sci. 280, 20130433 (2013).
doi: 10.1098/rspb.2013.0433
Dekens, M. P., Foulkes, N. S. & Tessmar-Raible, K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS ONE 12, e0172038 (2017).
pubmed: 28212399
pmcid: 5315407
doi: 10.1371/journal.pone.0172038
Kojima, D. et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE 6, e26388 (2011).
pubmed: 22043319
pmcid: 3197025
doi: 10.1371/journal.pone.0026388
Sato, K. et al. Two UV-sensitive photoreceptor proteins, Opn5m and Opn5m2 in ray-finned fish with distinct molecular properties and broad distribution in the retina and brain. PLoS ONE 11, e0155339 (2016).
pubmed: 27167972
pmcid: 4864311
doi: 10.1371/journal.pone.0155339
Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that couples with G
pubmed: 21135214
doi: 10.1073/pnas.1012498107
pmcid: 3009823
Ni, J. D., Baik, L. S., Holmes, T. C. & Montell, C. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature 545, 340–344 (2017).
pubmed: 28489826
pmcid: 5476302
doi: 10.1038/nature22325
Zwinkels, J. in Encyclopedia of Color Science and Technology (ed. Luo, R.) 1–8 (Springer, 2015).
Maverakis, E. et al. Light, including ultraviolet. J. Autoimmun. 34, J247–J257 (2010).
pubmed: 20018479
doi: 10.1016/j.jaut.2009.11.011
Ricevuto, E., Kroeker, K. J., Ferrigno, F., Micheli, F. & Gambi, M. C. Spatio-temporal variability of polychaete colonization at volcanic CO
doi: 10.1007/s00227-014-2555-y
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).
pubmed: 25611117
doi: 10.1111/ele.12407
Staples, J. F. Metabolic flexibility: hibernation, torpor, and estivation. Compr. Physiol. 6, 737–771 (2016).
pubmed: 27065167
doi: 10.1002/cphy.c140064
Putman, N. Marine migrations. Curr. Biol. 28, R972–R976 (2018).
pubmed: 30205073
doi: 10.1016/j.cub.2018.07.036
Alerstam, T. & Backman, J. Ecology of animal migration. Curr. Biol. 28, R968–R972 (2018).
pubmed: 30205072
doi: 10.1016/j.cub.2018.04.043
Yokota, T. & Oishi, T. Seasonal change in the locomotor activity rhythm of the medaka, Oryzias latipes. Int. J. Biometeorol. 36, 39–44 (1992).
pubmed: 1582723
doi: 10.1007/BF01208733
Foa, A. et al. Seasonal changes of locomotor activity patterns in ruin lizards Podarcis sicula. I. Endogenous control by the circadian system. Behav. Ecol. Sociobiol. 34, 267–274 (1994).
doi: 10.1007/BF00183477
Sztarker, J. & Tomsic, D. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J. Comp. Physiol. A 194, 587–596 (2008).
doi: 10.1007/s00359-008-0333-3
Varpe, O. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).
pubmed: 29045732
doi: 10.1093/icb/icx123
Last, K. S., Olive, P. J. W. & Edwards, A. J. An actographic study of diel activity in the semelparous polychaete Nereis (Neanthes) virens Sars in relation to the annual cycle of growth and reproduction. Invertebr. Reprod. Dev. 35, 141–145 (1999).
doi: 10.1080/07924259.1999.9652377
Last, K. S. & Olive, P. J. Interaction between photoperiod and an endogenous seasonal factor in influencing the diel locomotor activity of the benthic polychaete Nereis virens. Biol. Bull. 206, 103–112 (2004).
pubmed: 15111365
doi: 10.2307/1543541
Arendt, D., Tessmar-Raible, K., Snyman, H., Dorresteijn, A. W. & Wittbrodt, J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871 (2004).
pubmed: 15514158
doi: 10.1126/science.1099955
Tsukamoto, H., Chen, I. S., Kubo, Y. & Furutani, Y. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. J. Biol. Chem. 292, 12971–12980 (2017).
pubmed: 28623234
pmcid: 5546036
doi: 10.1074/jbc.M117.793539
Veraszto, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).
pubmed: 29809157
pmcid: 6019069
doi: 10.7554/eLife.36440
Bailes, H. J. & Lucas, R. J. Human melanopsin forms a pigment maximally sensitive to blue light (λ
doi: 10.1098/rspb.2012.2987
Bailes, H. J., Zhuang, L. Y. & Lucas, R. J. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool. PLoS ONE 7, e30774 (2012).
pubmed: 22292038
pmcid: 3265508
doi: 10.1371/journal.pone.0030774
Sugihara, T., Nagata, T., Mason, B., Koyanagi, M. & Terakita, A. Absorption characteristics of vertebrate non-visual opsin, Opn3. PLoS ONE 11, e0161215 (2016).
pubmed: 27532629
pmcid: 4988782
doi: 10.1371/journal.pone.0161215
Ballister, E. R., Rodgers, J., Martial, F. & Lucas, R. J. A live cell assay of GPCR coupling allows identification of optogenetic tools for controlling G
pubmed: 29338718
pmcid: 5771134
doi: 10.1186/s12915-017-0475-2
Tichy, A. M., Gerrard, E. J., Sexton, P. M. & Janovjak, H. Light-activated chimeric GPCRs: limitations and opportunities. Curr. Opin. Struct. Biol. 57, 196–203 (2019).
pubmed: 31207383
doi: 10.1016/j.sbi.2019.05.006
Almenar-Queralt, A. et al. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J. Biol. Chem. 288, 35222–35236 (2013).
pubmed: 24145027
pmcid: 3853272
doi: 10.1074/jbc.M113.513705
Hidaka, C., Kashio, T., Uchigaki, D. & Mitsui, S. Vulnerability or resilience of motopsin knockout mice to maternal separation stress depending on adulthood behaviors. Neuropsychiatr. Dis. Treat. 14, 2255–2268 (2018).
pubmed: 30233183
pmcid: 6129033
doi: 10.2147/NDT.S170281
Nakajima, T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure. Med. Sci. Monit. 21, 1721–1725 (2015).
pubmed: 26071878
pmcid: 4471854
doi: 10.12659/MSM.893234
Lu, J. & Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87 (2014).
pubmed: 23899494
doi: 10.1016/j.freeradbiomed.2013.07.036
Lincoln, G. A., Clarke, I. J., Hut, R. A. & Hazlerigg, D. G. Characterizing a mammalian circannual pacemaker. Science 314, 1941–1944 (2006).
pubmed: 17185605
doi: 10.1126/science.1132009
Hankins, M. W., Davies, W. I. L. & Foster, R. G. in Evolution of Visual and Non-visual Pigments (eds Hunt, D. M. et al.) 65–103 (Springer US, 2014).
Nakane, Y., Shimmura, T., Abe, H. & Yoshimura, T. Intrinsic photosensitivity of a deep brain photoreceptor. Curr. Biol. 24, R596–R597 (2014).
pubmed: 25004360
doi: 10.1016/j.cub.2014.05.038
Halford, S. et al. VA opsin-based photoreceptors in the hypothalamus of birds. Curr. Biol. 19, 1396–1402 (2009).
pubmed: 19664923
doi: 10.1016/j.cub.2009.06.066
Hunt, D. M., Hankins, M. W., Collin, S. P. & Marshall, N. J. Evolution of Visual and Non-Visual Pigments (Springer, 2014).
Kiang, N. Y., Siefert, J., Govindjee & Blankenship, R. E. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 222–251 (2007).
pubmed: 17407409
doi: 10.1089/ast.2006.0105
Bracher, A. U. & Tilzer, M. M. Underwater light field and phytoplankton absorbance in different surface water masses of the Atlantic sector of the Southern Ocean. Polar Biol. 24, 687–696 (2001).
doi: 10.1007/s003000100269
Reierth, E., Van’t Hof, T. J. & Stokkan, K. A. Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). J. Biol. Rhythms 14, 314–319 (1999).
pubmed: 10447312
doi: 10.1177/074873099129000731
Arnold, W. et al. Circadian rhythmicity persists through the Polar night and midnight sun in Svalbard reindeer. Sci. Rep. 8, 14466 (2018).
pubmed: 30262810
pmcid: 6160466
doi: 10.1038/s41598-018-32778-4
Häfker, N., Teschke, M., Hüppe, L. & Meyer, B. Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Mar. Ecol. Prog. Ser. 603, 79–92 (2018).
doi: 10.3354/meps12696
Hüppe, L. et al. Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biol. Lett. 16, 20200257 (2020).
pubmed: 32673547
pmcid: 7423037
doi: 10.1098/rsbl.2020.0257
Ashley, N. T. et al. Revealing a circadian clock in captive arctic-breeding songbirds, Lapland longspurs (Calcarius lapponicus), under constant illumination. J. Biol. Rhythms 29, 456–469 (2014).
pubmed: 25326246
doi: 10.1177/0748730414552323
Reierth, E. & Stokkan, K.-A. Activity rhythm in High Arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). Can. J. Zool. 76, 2031–2039 (1998).
doi: 10.1139/z98-173
Lu, W., Meng, Q. J., Tyler, N. J., Stokkan, K. A. & Loudon, A. S. A circadian clock is not required in an arctic mammal. Curr. Biol. 20, 533–537 (2010).
pubmed: 20226667
doi: 10.1016/j.cub.2010.01.042
Wallace, M. et al. Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol. Oceanogr. 55, 831–845 (2010).
doi: 10.4319/lo.2010.55.2.0831
Kobelkova, A. et al. Continuous activity and no cycling of clock genes in the Antarctic midge during the polar summer. J. Insect Physiol. 81, 90–96 (2015).
pubmed: 26172960
doi: 10.1016/j.jinsphys.2015.07.008
Stelzer, R. J. & Chittka, L. Bumblebee foraging rhythms under the midnight Sun measured with radiofrequency identification. BMC Biol. 8, 93 (2010).
pubmed: 20587015
pmcid: 2907328
doi: 10.1186/1741-7007-8-93
Nordtug, T. & Thor, B. M. Diurnal variations in natural light conditions at summer time in arctic and subarctic areas in relation to light detection in insects. Ecography 11, 2020–2209 (1988).
doi: 10.1111/j.1600-0587.1988.tb00802.x
Chittka, L., Stelzer, R. J. & Stanewsky, R. Daily changes in ultraviolet light levels can synchronize the circadian clock of bumblebees (Bombus terrestris). Chronobiol. Int. 30, 434–442 (2013).
pubmed: 23281715
doi: 10.3109/07420528.2012.741168
Tosches, M. A., Bucher, D., Vopalensky, P. & Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159, 46–57 (2014).
pubmed: 25259919
pmcid: 4182423
doi: 10.1016/j.cell.2014.07.042
Sugden, D., Cena, V. & Klein, D. C. Hydroxyindole O-methyltransferase. Methods Enzymol. 142, 590–596 (1987).
pubmed: 3298987
doi: 10.1016/S0076-6879(87)42070-3
Schenk, S. et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 8, e41556 (2019).
pubmed: 30767890
pmcid: 6377233
doi: 10.7554/eLife.41556
Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528 (2000).
pubmed: 11016572
doi: 10.1017/S0952523800174036
Stavenga, D. G., Oberwinkler, J. & Postma, M. in Handbook of Biological Physics Vol. 3 (eds Stavenga, D. G. et al.) 527–574 (Elsevier, 2000).
Duffett-Smith, P. & Zwart, J. Practical Astronomy with Your Calculator or Spreadsheet 4th edn (Cambridge Univ. Press, 2011).
Bannister, S. et al. TALE nucleases mediate efficient, heritable genome modifications in the marine annelid Platynereis dumerilii. Genetics 197, 19–31 (2014).
pubmed: 24807110
pmcid: 4012478
doi: 10.1534/genetics.113.161091
Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).
pubmed: 21493687
pmcid: 3130291
doi: 10.1093/nar/gkr218
Dahlem, T. J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).
pubmed: 22916025
pmcid: 3420959
doi: 10.1371/journal.pgen.1002861
Meeker, N. D., Hutchinson, S. A., Ho, L. & Trede, N. S. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43, 610, 612, 614 (2007).
pubmed: 18072590
doi: 10.2144/000112619
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485
doi: 10.1038/nmeth.1322
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712
doi: 10.1038/nmeth.3901
Caers, J. et al. Peptidomics of neuropeptidergic tissues of the tsetse fly Glossina morsitans morsitans. J. Am. Soc. Mass. Spectrom. 26, 2024–2038 (2015).
pubmed: 26463237
doi: 10.1007/s13361-015-1248-1
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201
doi: 10.1038/nprot.2007.261
Dorfer, V. et al. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014).
pubmed: 24909410
pmcid: 4119474
doi: 10.1021/pr500202e
Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007).
pubmed: 17952086
doi: 10.1038/nmeth1113
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
pubmed: 20147306
pmcid: 2844992
doi: 10.1093/bioinformatics/btq054
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316
doi: 10.1038/nprot.2016.136
Sharma, V. et al. Panorama public: a public repository for quantitative data sets processed in Skyline. Mol. Cell. Proteom. 17, 1239–1244 (2018).
doi: 10.1074/mcp.RA117.000543
Qayum, H. A., Klimley, A. P., Newton, R. & Richert, J. E. Broad-band versus narrow-band irradiance for estimating latitude by archival tags. Mar. Biol. 151, 467–481 (2007).
doi: 10.1007/s00227-006-0514-y
Ritchie, R. J., Larkum, A. W. D. & Ribas, I. Could photosynthesis function on Proxima Centauri b? Int. J. Astrobiol. 17, 147–176 (2018).
doi: 10.1017/S1473550417000167
Guehmann, M. et al. Spectral tuning of phototaxis by a G
doi: 10.1016/j.cub.2015.07.017
Kiang, N. Y., Siefert, J., Govindjee & Blankenship, R. E. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 222–251 (2007).
pubmed: 17407409
doi: 10.1089/ast.2006.0105
Depauw, F. A., Rogato, A., Ribera d’Alcalá, M. & Falciatore, A. Exploring the molecular basis of responses to light in marine diatoms. J. Exp. Bot. 63, 1575–1591 (2012).
pubmed: 22328904
doi: 10.1093/jxb/ers005