A Mechanistic Probe into the Dual Inhibition of T. cruzi Glucokinase and Hexokinase in Chagas Disease Treatment - A Stone Killing Two Birds?
ADMET compliance.
Chagas disease
bioactive compounds
molecular dynamics simulation
thermodynamics calculation
Journal
Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
17
10
2020
accepted:
07
01
2021
pubmed:
8
1
2021
medline:
3
7
2021
entrez:
7
1
2021
Statut:
ppublish
Résumé
Glucokinase (GLK) and Hexokinase (HK) have been characterized as essential targets in Trypanosoma cruzi (Tc)-mediated infection. A recent study reported the propensity of the concomitant inhibition of TcGLK and TcHK by compounds GLK2-003 and GLK2-004, thereby presenting an efficient approach in Chagas disease treatment. We investigated this possibility using atomic and molecular scaling methods. Sequence alignment of TcGLK and TcHK revealed that both proteins shared approximately 33.3 % homology in their glucose/inhibitor binding sites. The total binding free energies of GLK2-003 and GLK2-004 were favorable in both proteins. PRO92 and THR185 were pivotal to the binding and stabilization of the ligands in TcGLK, likewise their conserved counterparts, PRO163 and THR237 in TcHK. Both compounds also induced a similar pattern of perturbations in both TcGLK and TcHK secondary structure. Findings from this study therefore provide insights into the underlying mechanisms of dual inhibition exhibited by the compounds. These results can pave way to discover and optimize novel dual Tc inhibitors with favorable pharmacokinetics properties eventuating in the mitigation of Chagas disease.
Identifiants
pubmed: 33411971
doi: 10.1002/cbdv.202000863
doi:
Substances chimiques
Enzyme Inhibitors
0
Trypanocidal Agents
0
Hexokinase
EC 2.7.1.1
Glucokinase
EC 2.7.1.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2000863Subventions
Organisme : Center for High-Performance Computing
Informations de copyright
© 2021 Wiley-VHCA AG, Zurich, Switzerland.
Références
J. A. Lake, V. F. De la Cruz, P. C. G. Ferreira, C. Morel, L. Simpson, ‘Evolution of parasitism: Kinetoplastid protozoan history reconstructed from mitochondrial rRNA gene sequences’, Proc. Natl. Acad. Sci. USA 1988, 85, 4779-4783.
A. G. B. Simpson, J. Lukeš, A. J. Roger, ‘The evolutionary history of kinetoplastids and their kinetoplasts’, Mol. Biol. Evol. 2002, 19, 2071-2083.
‘CDC - Neglected Tropical Diseases - Diseases’, can be found under https://www.cdc.gov/globalhealth/ntd/diseases/index.html, n.d.
J. R. Coura, P. A. Vĩas, ‘Chagas disease: A new worldwide challenge’, Nature 2010, 465, DOI 10.1038/nature09221.
M. Carmo Pereira Nunes, W. Dones, C. A. Morillo, J. Justiniano Encina, A. Luiz Ribeiro, B. Horizonte, M. Gerais, P. Rico, S. Cruz de la Sierra, ‘Chagas Disease An Overview of Clinical and Epidemiological Aspects’, 2013, DOI 10.1016/j.jacc.2013.05.046.
F. Madeira, Y. M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A. R. N. Tivey, S. C. Potter, R. D. Finn, R. Lopez, ‘The EMBL-EBI search and sequence analysis tools APIs in 2019’, Nucleic Acids Res. 2019, 47, W636 - W641.
A. Teixeira, C. Gomes, A. Rosa, P. Araujo, C. Anunciação, E. Silveira-Lacerda, A. Almeida, S. Petrofeza, ‘Prevention and Control of Chagas Disease - An Overview’, Int. STD Res. Rev. 2018, 7, 1-15.
C. Gomes, A. B. Almeida, A. C. Rosa, P. F. Araujo, A. R. L. Teixeira, ‘American trypanosomiasis and Chagas disease: Sexual transmission’, Int. J. Infect. Dis. 2019, 81, 81-84.
C. Bern, S. P. Montgomery, L. Katz, S. Caglioti, S. L. Stramer, ‘Chagas disease and the US blood supply’, Curr. Opin. Infect. Dis. 2008, 21, 476-482.
B. Carrilero, J. J. Quesada, S. Alfayate, M. Segovia, ‘Enfermedad de Chagas congénita en recién nacido de madre de origen boliviano’, Enfermedades Infecciosas y Microbiologia Clinica 2009, 27, 486-487.
‘Chagas disease (American trypanosomiasis)’ can be found under https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis), n.d.
B. Y. Lee, K. M. Bacon, D. L. Connor, A. M. Willig, R. R. Bailey, ‘The potential economic value of a Trypanosoma cruzi (chagas disease) vaccine in Latin America’, PLoS Neglected Trop. Dis. 2010, 4, 1-8.
J. R. Coura, S. L. De Castro, ‘A critical review on chagas disease chemotherapy’, Mem. Inst. Oswaldo Cruz 2002, 97, 3-24.
C. Bern, ‘Chagas’ disease’, N. Engl. J. Med. 2015, 373, 456-466.
J. Bermudez, C. Davies, A. Simonazzi, J. Pablo Real, S. Palma, ‘Current drug therapy and pharmaceutical challenges for Chagas disease’, Acta Trop. 2016, 156, 1-16.
C. A. Morillo, J. A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla, B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S. J. Connolly, S. Yusuf, ‘Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy’, N. Engl. J. Med. 2015, 373, 1295-1306.
F. Villalta, G. Rachakonda, ‘Advances in preclinical approaches to Chagas disease drug discovery’, Expert Opin. Drug Discovery 2019, 14, 1161-1174.
A. H. Fairlamb, ‘Future prospects for the chemotherapy of Chagas’ disease’, Medicina (B. Aires) 1999, 59, 179-187.
F. S. Buckner, N. Navabi, ‘Advances in Chagas disease drug development: 2009-2010’, Curr. Opin. Infect. Dis. 2010, 23, 609-616.
D. A. Maugeri, J. J. Cazzulo, ‘The pentose phosphate pathway in Trypanosoma cruzi’, FEMS Microbiol. Lett. 2004, 234, 117-123.
M. I. Esteve, J. J. Cazzulo, ‘The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: The absence of two inter-subunit salt bridges as a reason for enzyme instability’, Mol. Biochem. Parasitol. 2004, 133, 197-207.
A. T. Cordeiro, A. J. Cáceres, D. Vertommen, J. L. Concepción, P. A. M. Michels, W. Versées, ‘The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes’, J. Mol. Biol. 2007, 372, 1215-26.
K. M. Tyler, D. M. Engman, ‘The life cycle of Trypanosoma cruzi revisited’, Int. J. Parasitol. 2001, pp. 472-481.
C. L. M. J. Verlinde, V. Hannaert, C. Blonski, M. Willson, J. J. Périé, L. A. Fothergill-Gilmore, F. R. Opperdoes, M. H. Gelb, W. G. J. Hol, P. A. M. Michels, ‘Glycolysis as a target for the design of new anti-trypanosome drugs’, Drug Resist. Updates 2001, 4, 50-65.
A. G. Tielens, J. J. Van Hellemond, ‘Differences in energy metabolism between trypanosomatidae’, Parasitol. Today 1998, 14, 265-72.
S. Kawai, T. Mukai, S. Mori, B. Mikami, K. Murata, ‘Hypothesis: Structures, evolution, and ancestor of glucose kinases in the hexokinase family’, J. Biosci. Bioeng. 2005, 99, 320-330.
E. L. D'Antonio, M. S. Deinema, S. P. Kearns, T. A. Frey, S. Tanghe, K. Perry, T. A. Roy, H. S. Gracz, A. Rodriguez, J. D'Antonio, ‘Structure-based approach to the identification of a novel group of selective glucosamine analog inhibitors of Trypanosoma cruzi glucokinase’, Mol. Biochem. Parasitol. 2015, 204, 64-76.
O. Et, O. J. M. Bos, F. R. Opperdoes, ‘Glycolytic enzymes of Trypanosoma brucei Simultaneous purification, intraglycosomal concentrations and physical properties’, Eur. J. Biochem. 1986, 157, 441-453.
M. Willson, Y. H. Sanejouand, J. Perie, V. Hannaert, F. Opperdoes, ‘Sequencing, modeling, and selective inhibition of Trypanosoma brucei hexokinase’, Chem. Biol. 2002, 9, 839-847.
A. J. Cáceres, W. Quiñones, M. Gualdrón, A. Cordeiro, L. Avilán, P. A. M. Michels, J. L. Concepción, ‘Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp’, Mol. Biochem. Parasitol. 2007, 156, 235-245.
A. J. Cáceres, R. Portillo, H. Acosta, D. Rosales, W. Quiñones, L. Avilan, L. Salazar, M. Dubourdieu, P. A. M. Michels, J. L. Concepción, ‘Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi’, Mol. Biochem. Parasitol. 2003, 126, 251-262.
G. F. Mercaldi, E. L. D'Antonio, A. Aguessi, A. Rodriguez, A. T. Cordeiro, ‘Discovery of antichagasic inhibitors by high-throughput screening with Trypanosoma cruzi glucokinase’, Bioorg. Med. Chem. Lett. 2019, 29, 1948-1953.
S. Patyar, A. Prakash, B. Medhi, ‘Dual inhibition: a novel promising pharmacological approach for different disease conditions’, J. Pharm. Pharmacol. 2011, 63, 459-471.
X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, ‘Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery’, Curr. Comput.-Aided Drug Des. 2012, 7, 146-157.
R. Brüschweiler, ‘Efficient RMSD measures for the comparison of two molecular ensembles’, Proteins Struct. Funct. Bioinf. 2002, 50, 26-34.
C. V. Kumar, R. G. Swetha, A. Anbarasu, S. Ramaiah, ‘Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1 A’, Adv. Bioinform. 2014, 2014, DOI 10.1155/2014/502618.
M. Y. Lobanov, N. S. Bogatyreva, O. V. Galzitskaya, ‘Radius of gyration as an indicator of protein structure compactness’, Mol. Biol. 2008, 42, 623-628.
M. Król, I. Roterman, B. Piekarska, L. Konieczny, J. Rybarska, B. Stopa, P. Spólnik, ‘Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction’, Proteins Struct. Funct. Genet. 2005, 59, 545-554.
K. Teilum, J. G. Olsen, B. B. Kragelund, ‘Functional aspects of protein flexibility’, Cell. Mol. Life Sci. 2009, 66, 2231-2247.
C. C. David, D. J. Jacobs, ‘Principal component analysis: a method for determining the essential dynamics of proteins’, Methods Mol. Biol. 2014, 1084, 193-226.
M. Gromiha, S. Ahmad, ‘Role of Solvent Accessibility in Structure Based Drug Design’, Curr. Comput.-Aided Drug Des. 2005, 1, 223-235.
M. A. Moret, G. F. Zebende, ‘Amino acid hydrophobicity and accessible surface area’, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2007, 75, 011920.
K. P. Murphy, ‘Stabilization of protein structure’, Methods Mol. Biol. (Clifton, N. J.) 2001, 168, 1-16.
C. A. Lipinski, ‘Drug-like properties and the causes of poor solubility and poor permeability’, J. Pharmacol. Toxicol. Methods 2000, 44, 235-249.
C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, ‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings’, Adv. Drug Delivery Rev. 2001, 46, 3-26.
J. A. Arnott, S. L. Planey, ‘The influence of lipophilicity in drug discovery and design’, Expert Opin. Drug Discovery 2012, 7, 863-875.
P. Ertl, A. Schuffenhauer, ‘Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions’, J. Cheminf. 2009, 1, 8.
J. Fernandes, C. R. Gattass, ‘Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1)’, J. Med. Chem. 2009, 52, 1214-1218.
S. D. Bembenek, B. A. Tounge, C. H. Reynolds, ‘Ligand efficiency and fragment-based drug discovery’, Drug Discovery Today 2009, 14, 278-283.
J. W. M. Nissink, ‘Simple size-independent measure of ligand efficiency’, J. Chem. Inf. Model. 2009, 49, 1617-1622.
C. H. Reynolds, B. A. Tounge, S. D. Bembenek, ‘Ligand binding efficiency: Trends, physical basis, and implications’, J. Med. Chem. 2008, 51, 2432-2438.
‘ChemAxon - Software Solutions and Services for Chemistry & Biology’ can be found under https://chemaxon.com/products/marvin, n.d.
M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, ‘Avogadro: An advanced semantic chemical editor, visualization, and analysis platform’, J. Cheminf. 2012, 4, 17.
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, ‘UCSF Chimera - A visualization system for exploratory research and analysis’, J. Comput. Chem. 2004, 25, 1605-1612.
N. Eswar, B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M.-Y. Shen, U. Pieper, A. Sali, ‘Comparative protein structure modeling using Modeller’, Curr. Protoc. Bioinforma. 2006, Chapter 5, Unit-5.6.
A. Roy, A. Kucukural, Y. Zhang, ‘I-TASSER: A unified platform for automated protein structure and function prediction’, Nat. Protoc. 2010, 5, 725-738.
Y. Zhang, ‘I-TASSER server for protein 3D structure prediction’, BMC Bioinf. 2008, 9, 40.
D. Eisenberg, R. Lüthy, J. U. Bowie, ‘VERIFY3D: assessment of protein models with three-dimensional profiles’, Methods Enzymol. 1997, 277, 396-404.
M. Wiederstein, M. J. Sippl, ‘ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins’, Nucleic Acids Res. 2007, 35, W407 - W410.
K. Gopalakrishnan, G. Sowmiya, S. S. Sheik, K. Sekar, ‘Ramachandran Plot on The Web (2.0)’, Protein Pept. Lett. 2007, 14, 669-671.
O. Trott, A. J. Olson, ‘Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading’, J. Comput. Chem. 2010, 31, 455-461.
N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu, D. Nilsson, G. Aggarwal, A. N. Tran, E. Ghedin, E. A. Worthey, A. L. Delcher, G. Blandin, S. J. Westenberger, E. Caler, G. C. Cerqueira, C. Branche, B. Haas, A. Anupama, E. Arner, L. Åslund, P. Attipoe, E. Bontempi, F. Bringaud, P. Burton, E. Cadag, D. A. Campbell, M. Carrington, J. Crabtree, H. Darban, J. F. Da Silveira, P. De Jong, K. Edwards, P. T. Englund, G. Fazelina, T. Feldblyum, M. Ferella, A. C. Frasch, K. Gull, D. Horn, L. Hou, Y. Huang, E. Kindlund, M. Klingbeil, S. Kluge, H. Koo, D. Lacerda, M. J. Levin, H. Lorenzi, T. Louie, C. R. Machado, R. McCulloch, A. McKenna, Y. Mizuno, J. C. Mottram, S. Nelson, S. Ochaya, K. Osoegawa, G. Pai, M. Parsons, M. Pentony, U. Pettersson, M. Pop, J. L. Ramirez, J. Rinta, L. Robertson, S. L. Salzberg, D. O. Sanchez, A. Seyler, R. Sharma, J. Shetty, A. J. Simpson, E. Sisk, M. T. Tammi, R. Tarleton, S. Teixeira, S. Van Aken, C. Vogt, P. N. Ward, B. Wickstead, J. Wortman, O. White, C. M. Fraser, K. D. Stuart, B. Andersson, ‘The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease’, Science 2005, 309, DOI 10.1126/science.1112631.
D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, ‘The Amber biomolecular simulation programs’, J. Comput. Chem. 2005, 26, 1668-1688.
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, ‘Development and testing of a general amber force field’, J. Comput. Chem. 2004, 25, 1157-74.
G. S. Grest, K. Kremer, ‘Molecular dynamics simulation for polymers in the presence of a heat bath’, Phys. Rev. A 1986, 33, 3628-3631.
H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, J. R. Haak, ‘Molecular dynamics with coupling to an external bath’, J. Chem. Phys. 1984, 81, 3684-3690.
D. R. Roe, T. E. Cheatham, ‘PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data’, J. Chem. Theory Comput. 2013, 9, 3084-3095.
E. Seifert, ‘OriginPro 9.1: scientific data analysis and graphing software-software review’, J. Chem. Inf. Model. 2014, 54, 1552.
N. Chaudhary, P. Aparoy, ‘Deciphering the mechanism behind the varied binding activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies’, J. Biomol. Struct. Dyn. 2017, 35, 868-882.
A. Gupta, N. Chaudhary, P. Aparoy, ‘MM-PBSA and per-residue decomposition energy studies on 7-phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site’, Int. J. Biol. Macromol. 2018, 119, 352-359.
V. Karthick, N. Nagasundaram, C. G. P. Doss, C. Chakraborty, R. Siva, A. Lu, G. Zhang, H. Zhu, ‘Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus’, Infect. Dis. Poverty 2016, 5, DOI 10.1186/s40249-016-0105-1.
M. Lawal, F. A. Olotu, M. E. S. Soliman, ‘Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools’, Comput. Biol. Med. 2018, 98, 168-177.
C. Liao, M. Sitzmann, A. Pugliese, M. C. Nicklaus, ‘Software and resources for computational medicinal chemistry’, Future Med. Chem. 2011, 3, 1057-1085.
A. Daina, O. Michielin, V. Zoete, ‘SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules’, Sci. Rep. 2017, 7, 1-13.
T. Sander, J. Freyss, M. Von Korff, C. Rufener, ‘DataWarrior: An open-source program for chemistry aware data visualization and analysis’, J. Chem. Inf. Model. 2015, 55, 460-473.
‘Molinspiration Cheminformatics’ can be found under https://www.molinspiration.com/, n.d.