Task-dependent recruitment across ankle extensor muscles and between mechanical demands is driven by the metabolic cost of muscle contraction.
human
motor unit recruitment
muscle
musculoskeletal modelling
Journal
Journal of the Royal Society, Interface
ISSN: 1742-5662
Titre abrégé: J R Soc Interface
Pays: England
ID NLM: 101217269
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
entrez:
6
1
2021
pubmed:
7
1
2021
medline:
22
6
2021
Statut:
ppublish
Résumé
The nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands. In this study, we used an experimental human cycling paradigm and musculoskeletal simulations to test the theory that a strategy of prioritizing the minimization of the metabolic cost of muscle contraction, which improves mechanical efficiency, governs the recruitment of motor units within a muscle and the coordination among synergist muscles within the limb. Our results support our hypothesis, for which measured muscle activity and model-predicted muscle forces in soleus-the slower but stronger ankle plantarflexor-is favoured over the weaker but faster medial gastrocnemius (MG) to produce plantarflexor force to meet increased load demands. However, for faster-contracting speeds induced by faster-pedalling cadence, the faster MG is favoured. Similar recruitment patterns were observed for the slow and fast fibres within each muscle. By contrast, a commonly used modelling strategy that minimizes muscle excitations failed to predict force sharing and known physiological recruitment strategies, such as orderly motor unit recruitment. Our findings illustrate that this common strategy for recruiting motor units within muscles and coordination between muscles can explain the control of the plantarflexor muscles across a range of mechanical demands.
Identifiants
pubmed: 33402020
doi: 10.1098/rsif.2020.0765
pmc: PMC7879759
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
20200765Références
J Biomech. 2016 Oct 3;49(14):3200-3207
pubmed: 27544621
J Neurophysiol. 1980 Mar;43(3):612-20
pubmed: 7373352
Ann Biomed Eng. 2012 Aug;40(8):1708-20
pubmed: 22350666
Ann Biomed Eng. 2017 Dec;45(12):2762-2774
pubmed: 28900782
Exp Brain Res. 1983;50(2-3):220-7
pubmed: 6227493
J Electromyogr Kinesiol. 2000 Dec;10(6):433-45
pubmed: 11102846
J Biomech. 1981;14(11):793-801
pubmed: 7334039
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
pubmed: 18018689
J Biomech. 2014 Apr 11;47(6):1373-81
pubmed: 24581797
J Neurophysiol. 1993 Dec;70(6):2470-88
pubmed: 8120594
J Comp Physiol A. 1994 Jul;175(1):123-31
pubmed: 8083846
J R Soc Interface. 2006 Aug 22;3(9):533-44
pubmed: 16849250
J Physiol. 1989 Feb;409:451-71
pubmed: 2585297
J R Soc Interface. 2019 Aug 30;16(157):20190402
pubmed: 31431186
J Biomech. 2013 Feb 22;46(4):780-7
pubmed: 23246045
J Physiol. 1993 Dec;472:61-80
pubmed: 8145164
J Neurophysiol. 1972 Jan;35(1):137-48
pubmed: 4332852
Exerc Sport Sci Rev. 1988;16:89-137
pubmed: 3292268
Crit Rev Biomed Eng. 1989;17(4):359-411
pubmed: 2676342
J Neurophysiol. 1965 May;28:560-80
pubmed: 14328454
IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79
pubmed: 27392337
J Exp Biol. 1998 May;201(Pt 10):1527-40
pubmed: 9556536
Exerc Sport Sci Rev. 1996;24:173-202
pubmed: 8744250
J Theor Biol. 1997 Jun 21;186(4):467-76
pubmed: 9278722
J Physiol. 2001 Mar 15;531(Pt 3):781-91
pubmed: 11251058
J Neurol Sci. 1973 Jan;18(1):111-29
pubmed: 4120482
J Exp Biol. 2008 Jun;211(Pt 12):1882-92
pubmed: 18515718
J Physiol. 1969 Oct;204(2):331-46
pubmed: 5824642
J Biomech. 1988;21(3):249-62
pubmed: 3379084
J Biomech. 2005 Apr;38(4):745-54
pubmed: 15713295
Ann Biomed Eng. 2016 Oct;44(10):2922-2936
pubmed: 27001399
J Biomech. 2018 Feb 8;68:6-13
pubmed: 29287843
J Physiol. 2015 Aug 15;593(16):3493-511
pubmed: 25920414
J R Soc Interface. 2018 Nov 21;15(148):
pubmed: 30464057
J Physiol. 1999 Jun 15;517 ( Pt 3):839-54
pubmed: 10358123
J Biomech. 1991;24 Suppl 1:31-9
pubmed: 1791180
J Biomech Eng. 2001 Oct;123(5):381-90
pubmed: 11601721
J Exp Biol. 2017 May 1;220(Pt 9):1643-1653
pubmed: 28202584
Nat Neurosci. 2004 Sep;7(9):907-15
pubmed: 15332089
J Biomech. 2006;39(14):2623-30
pubmed: 16216251
Science. 1957 Dec 27;126(3287):1345-7
pubmed: 13495469
J Exp Biol. 2004 Oct;207(Pt 22):3883-90
pubmed: 15472019
J Neurophysiol. 2009 Feb;101(2):843-54
pubmed: 19073812
Physiol Rev. 1964 Apr;44:219-88
pubmed: 14152906
J Neurophysiol. 1965 May;28(3):599-620
pubmed: 5835487