TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
02 2021
Historique:
received: 20 11 2019
accepted: 06 11 2020
pubmed: 6 1 2021
medline: 1 4 2021
entrez: 5 1 2021
Statut: ppublish

Résumé

Amyotrophic lateral sclerosis (ALS) was initially thought to be associated with oxidative stress when it was first linked to mutant superoxide dismutase 1 (SOD1). The subsequent discovery of ALS-linked genes functioning in RNA processing and proteostasis raised the question of how different biological pathways converge to cause the disease. Both familial and sporadic ALS are characterized by the aggregation of the essential DNA- and RNA-binding protein TDP-43, suggesting a central role in ALS etiology. Here we report that TDP-43 aggregation in neuronal cells of mouse and human origin causes sensitivity to oxidative stress. Aggregated TDP-43 sequesters specific microRNAs (miRNAs) and proteins, leading to increased levels of some proteins while functionally depleting others. Many of those functionally perturbed gene products are nuclear-genome-encoded mitochondrial proteins, and their dysregulation causes a global mitochondrial imbalance that augments oxidative stress. We propose that this stress-aggregation cycle may underlie ALS onset and progression.

Identifiants

pubmed: 33398173
doi: 10.1038/s41594-020-00537-7
pii: 10.1038/s41594-020-00537-7
doi:

Substances chimiques

DNA-Binding Proteins 0
Mitochondrial Proteins 0
Protein Aggregates 0
Reactive Oxygen Species 0
TARDBP protein, human 0
TDP-43 protein, mouse 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

132-142

Références

Morrice, J. R., Gregory-Evans, C. Y. & Shaw, C. A. Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 347–353 (2017).
pubmed: 27902929 doi: 10.1016/j.bbadis.2016.11.025
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).
pubmed: 8446170 doi: 10.1038/362059a0
Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).
pubmed: 9743498 doi: 10.1126/science.281.5384.1851
Barber, S. C. & Shaw, P. J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med 48, 629–641 (2010).
pubmed: 19969067 doi: 10.1016/j.freeradbiomed.2009.11.018
Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).
pubmed: 19951898 pmcid: 2806318 doi: 10.1083/jcb.200908164
Da Cruz, S. et al. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab. 15, 778–786 (2012).
pubmed: 22560226 pmcid: 3565468 doi: 10.1016/j.cmet.2012.03.019
Parone, P. A. et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013).
pubmed: 23486940 pmcid: 3711648 doi: 10.1523/JNEUROSCI.1119-12.2013
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).
pubmed: 17023659 doi: 10.1126/science.1134108
Al-Chalabi, A., van den Berg, L. H. & Veldink, J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat. Rev. Neurol. 13, 96–104 (2017).
pubmed: 27982040 doi: 10.1038/nrneurol.2016.182
DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).
pubmed: 21944778 pmcid: 3202986 doi: 10.1016/j.neuron.2011.09.011
Saberi, S. et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 135, 459–474 (2018).
pubmed: 29196813 doi: 10.1007/s00401-017-1793-8
Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011).
pubmed: 22036560 pmcid: 3220614 doi: 10.1016/j.cell.2011.10.011
Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).
pubmed: 23931993 pmcid: 4411085 doi: 10.1016/j.neuron.2013.07.033
Conlon, E. G. & Manley, J. L. RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. 31, 1509–1528 (2017).
pubmed: 28912172 pmcid: 5630017 doi: 10.1101/gad.304055.117
Ito, D., Seki, M., Tsunoda, Y., Uchiyama, H. & Suzuki, N. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann. Neurol. 69, 152–162 (2011).
pubmed: 21280085 doi: 10.1002/ana.22246
Guo, W. et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat. Struct. Mol. Biol. 18, 822–830 (2011).
pubmed: 21666678 pmcid: 3357956 doi: 10.1038/nsmb.2053
Lagier-Tourenne, C. & Cleveland, D. W. Rethinking ALS: the FUS about TDP-43. Cell 136, 1001–1004 (2009).
pubmed: 19303844 pmcid: 3110083 doi: 10.1016/j.cell.2009.03.006
Zhang, Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612 (2009).
pubmed: 19383787 pmcid: 2671323 doi: 10.1073/pnas.0900688106
Li, Q., Yokoshi, M., Okada, H. & Kawahara, Y. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat. Commun. 6, 6183 (2015).
pubmed: 25630387 doi: 10.1038/ncomms7183
Dewey, C. M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Biol. 31, 1098–1108 (2011).
pubmed: 21173160 doi: 10.1128/MCB.01279-10
Goh, C. W. et al. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J. Biol. Chem. 293, 163–176 (2018).
pubmed: 29109149 doi: 10.1074/jbc.M117.814111
Lei, Y. et al. DJ-1 suppresses cytoplasmic TDP-43 aggregation in oxidative stress-induced cell injury. J. Alzheimers Dis. 66, 1001–1014 (2018).
pubmed: 30372676 doi: 10.3233/JAD-180460
Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).
pubmed: 27348499 pmcid: 4974139 doi: 10.1038/nm.4130
Rot, G. et al. High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Rep. 19, 1056–1067 (2017).
pubmed: 28467899 pmcid: 5437728 doi: 10.1016/j.celrep.2017.04.028
Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).
pubmed: 30643298 pmcid: 6348009 doi: 10.1038/s41593-018-0293-z
Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).
pubmed: 20133711 pmcid: 2840518 doi: 10.1073/pnas.0912417107
Igaz, L. M. et al. Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516–8524 (2009).
pubmed: 19164285 pmcid: 2659210 doi: 10.1074/jbc.M809462200
Krach, F. et al. Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. 136, 405–423 (2018).
pubmed: 29881994 pmcid: 6215775 doi: 10.1007/s00401-018-1870-7
Kapeli, K. et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143 (2016).
pubmed: 27378374 pmcid: 4935974 doi: 10.1038/ncomms12143
Butovsky, O. et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann. Neurol. 77, 75–99 (2015).
pubmed: 25381879 doi: 10.1002/ana.24304
Prudencio, M. et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 18, 1175–1182 (2015).
pubmed: 26192745 pmcid: 4830686 doi: 10.1038/nn.4065
King, I. N. et al. The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex. J. Biol. Chem. 289, 14263–14271 (2014).
pubmed: 24719334 pmcid: 4022891 doi: 10.1074/jbc.M114.561902
Fan, Z., Chen, X. & Chen, R. Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics 103, 76–82 (2014).
pubmed: 23827811 doi: 10.1016/j.ygeno.2013.06.006
Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).
pubmed: 21358640 pmcid: 3108889 doi: 10.1038/nn.2778
Xiao, S. et al. RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell Neurosci. 47, 167–180 (2011).
pubmed: 21421050 doi: 10.1016/j.mcn.2011.02.013
Shu, P. et al. Opposing gradients of microRNA expression temporally pattern layer formation in the developing neocortex. Dev. Cell 49, 764–785.e4 (2019).
pubmed: 31080058 doi: 10.1016/j.devcel.2019.04.017
Nishimoto, Y. et al. Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J. Biol. Chem. 285, 608–619 (2010).
pubmed: 19887443 doi: 10.1074/jbc.M109.022012
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005 (2015).
pmcid: 4532895 doi: 10.7554/eLife.05005
John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).
pubmed: 15502875 pmcid: 521178 doi: 10.1371/journal.pbio.0020363
Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).
pubmed: 21358643 pmcid: 3094729 doi: 10.1038/nn.2779
Iguchi, Y. et al. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol. Dis. 45, 862–870 (2012).
pubmed: 22198567 doi: 10.1016/j.nbd.2011.12.002
Hu, J. Y. et al. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 414–427 (2017).
pubmed: 27890528 doi: 10.1016/j.bbadis.2016.11.022
Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).
pubmed: 29311743 pmcid: 5800968 doi: 10.1038/s41593-017-0047-3
von Mering, C. et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005).
pubmed: 15608232 doi: 10.1093/nar/gki005
Higuchi-Sanabria, R., Frankino, P. A., Paul, J. W. III., Tronnes, S. U. & Dillin, A. A futile battle? Protein quality control and the stress of aging. Dev. Cell 44, 139–163 (2018).
pubmed: 29401418 pmcid: 5896312 doi: 10.1016/j.devcel.2017.12.020
Chiang, P. M. et al. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl Acad. Sci. USA 107, 16320–16324 (2010).
pubmed: 20660762 pmcid: 2941284 doi: 10.1073/pnas.1002176107
Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).
pubmed: 22323604 pmcid: 3295278 doi: 10.1073/pnas.1112427109
Srivastava, T. et al. Regulation of neuronal mRNA translation by CaM-kinase I phosphorylation of eIF4GII. J. Neurosci. 32, 5620–5630 (2012).
pubmed: 22514323 pmcid: 3346851 doi: 10.1523/JNEUROSCI.0030-12.2012
Hazelett, D. J., Chang, J. C., Lakeland, D. L. & Morton, D. B. Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2, 789–802 (2012).
pmcid: 3385985 doi: 10.1534/g3.112.002998
Arai, T. et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 117, 125–136 (2009).
pubmed: 19139911 doi: 10.1007/s00401-008-0480-1
Hasegawa, M. et al. TDP-43 is deposited in the Guam parkinsonism–dementia complex brains. Brain 130, 1386–1394 (2007).
pubmed: 17439983 doi: 10.1093/brain/awm065
Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).
pubmed: 19018245 doi: 10.1097/NEN.0b013e31818e8951
Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).
pubmed: 23102266 pmcid: 3484374 doi: 10.1016/j.molcel.2012.09.025
Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).
pubmed: 7768437 pmcid: 1206454 doi: 10.1093/genetics/139.3.1247
Gautam, M. et al. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol. 137, 47–69 (2019).
pubmed: 30450515 doi: 10.1007/s00401-018-1934-8
Riedl, S. J. & Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897–907 (2004).
pubmed: 15520809 doi: 10.1038/nrm1496
Cui, H., Kong, Y. & Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012, 646354 (2012).
pubmed: 21977319 doi: 10.1155/2012/646354
Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).
pubmed: 23698443 pmcid: 3663447 doi: 10.1038/nature12188
Masand, R. et al. Proteome imbalance of mitochondrial electron transport chain in brown adipocytes leads to metabolic benefits. Cell Metab. 27, 616–629.e4 (2018).
pubmed: 29514069 pmcid: 6020063 doi: 10.1016/j.cmet.2018.01.018
Rudnick, N. D. et al. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proc. Natl Acad. Sci. USA 114, E8294–E8303 (2017).
pubmed: 28904095 pmcid: 5625902 doi: 10.1073/pnas.1704294114
Yang, Q. et al. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci. Adv. 2, e1501482 (2016).
pubmed: 27500274 pmcid: 4974095 doi: 10.1126/sciadv.1501482
de Planell-Saguer, M., Rodicio, M. C. & Mourelatos, Z. Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat. Protoc. 5, 1061–1073 (2010).
pubmed: 20539282 doi: 10.1038/nprot.2010.62
Kim, K. H., Son, J. M., Benayoun, B. A. & Lee, C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 28, 516–524.e7 (2018).
pubmed: 29983246 pmcid: 6185997 doi: 10.1016/j.cmet.2018.06.008
Wang, G., Gong, Y., Burczynski, F. J. & Hasinoff, B. B. Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay. Free Radic. Res 42, 435–441 (2008).
pubmed: 18484276 doi: 10.1080/10715760802074462
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).
pubmed: 7584402
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
pubmed: 26045719 pmcid: 4455052 doi: 10.1186/s13100-015-0041-9
Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57 (2016).
pubmed: 27174935 pmcid: 4987944 doi: 10.1093/nar/gkw413
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).
pubmed: 24213538 pmcid: 3918504 doi: 10.1038/nsmb.2699
Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).
pubmed: 26450961 doi: 10.1093/nar/gkv1003
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712 doi: 10.1038/nmeth.3901
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017).
pubmed: 27899595 doi: 10.1093/nar/gkw1138
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289 doi: 10.1093/nar/gky1106

Auteurs

Xinxin Zuo (X)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.

Jie Zhou (J)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.

Yinming Li (Y)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.

Kai Wu (K)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.

Zonggui Chen (Z)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.

Zhiwei Luo (Z)

Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Xiaorong Zhang (X)

Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China.

Yi Liang (Y)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.

Miguel A Esteban (MA)

Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Yu Zhou (Y)

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China. yu.zhou@whu.edu.cn.
Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China. yu.zhou@whu.edu.cn.

Xiang-Dong Fu (XD)

Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, USA. xdfu@ucsd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH