Insights into SusCD-mediated glycan import by a prominent gut symbiont.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
04 01 2021
04 01 2021
Historique:
received:
23
06
2020
accepted:
19
11
2020
entrez:
5
1
2021
pubmed:
6
1
2021
medline:
14
1
2021
Statut:
epublish
Résumé
In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a "pedal bin" transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.
Identifiants
pubmed: 33398001
doi: 10.1038/s41467-020-20285-y
pii: 10.1038/s41467-020-20285-y
pmc: PMC7782687
doi:
Substances chimiques
Bacterial Proteins
0
Ligands
0
Oligosaccharides
0
Polysaccharides
0
fructooligosaccharide
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
44Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P003192/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 215064/Z/18/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 108466/Z/15/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N020413/1
Pays : United Kingdom
Références
Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
doi: 10.1038/nature11234
Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).
pubmed: 26338727
doi: 10.1136/gutjnl-2015-309990
Sommer, F. & Backhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).
pubmed: 23435359
doi: 10.1038/nrmicro2974
Cantarel, B. L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 7, e28742 (2012).
pubmed: 22719820
pmcid: 3374616
doi: 10.1371/journal.pone.0028742
Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).
pubmed: 25088686
doi: 10.1016/j.jmb.2014.07.028
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
pubmed: 22491358
pmcid: 4005082
doi: 10.1038/nrmicro2746
Cockburn, D. W. & Koropatkin, N. M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428, 3230–3252 (2016).
pubmed: 27393306
doi: 10.1016/j.jmb.2016.06.021
Makki, K., Deehan, E. C., Walter, J. & Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).
pubmed: 29902436
doi: 10.1016/j.chom.2018.05.012
Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).
pubmed: 24388214
doi: 10.1016/B978-0-12-800100-4.00003-9
Wexler, A. G. & Goodman, A. L. An insider’s perspective: bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).
Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
pubmed: 22205877
pmcid: 3243724
doi: 10.1371/journal.pbio.1001221
Ndeh, D. & Gilbert, H. J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 42, 146–164 (2018).
pubmed: 29325042
doi: 10.1093/femsre/fuy002
Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
pubmed: 19553672
pmcid: 2757170
doi: 10.1074/jbc.R109.022848
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).
pubmed: 18996345
pmcid: 2605320
doi: 10.1016/j.chom.2008.09.007
Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411 (2017).
pubmed: 28077872
pmcid: 5497811
doi: 10.1038/nature20828
Shipman, J. A., Berleman, J. E. & Salyers, A. A. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J. Bacteriol. 182, 5365–5372 (2000).
pubmed: 10986238
pmcid: 110978
doi: 10.1128/JB.182.19.5365-5372.2000
Madej, M. et al. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat. Microbiol. 5, 1016–1025 (2020).
Foley, M. H., Martens, E. C. & Koropatkin, N. M. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol. Microbiol. 108, 551–566 (2018).
pubmed: 29528148
pmcid: 5980745
doi: 10.1111/mmi.13949
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–U256 (2010).
pubmed: 20603004
pmcid: 2900928
doi: 10.1016/j.cell.2010.05.005
Oner, E. T., Hernandez, L. & Combie, J. Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol. Adv. 34, 827–844 (2016).
pubmed: 27178733
doi: 10.1016/j.biotechadv.2016.05.002
Vijn, I. & Smeekens, S. Fructan: more than a reserve carbohydrate? Plant Physiol. 120, 351–359 (1999).
pubmed: 10364386
pmcid: 1539216
doi: 10.1104/pp.120.2.351
Blake, J. D., Clarke, M. L., Jansson, P. E. & McNeil, K. E. Fructan from Erwinia herbicola. J. Bacteriol. 151, 1595–1597 (1982).
pubmed: 7107561
pmcid: 220442
doi: 10.1128/jb.151.3.1595-1597.1982
Benigar, E. et al. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan. Langmuir 30, 4172–4182 (2014).
pubmed: 24654746
doi: 10.1021/la500830j
Bolam, D. N. & Sonnenburg, J. L. Mechanistic insight into polysaccharide use within the intestinal microbiota. Gut Microbes 2, 86–90 (2011).
pubmed: 21637023
pmcid: 3225772
doi: 10.4161/gmic.2.2.15232
Mardo, K. et al. A highly active endo-levanase BT1760 of a dominant mammalian gut commensal bacteroides thetaiotaomicron cleaves not only various bacterial levans, but also levan of timothy grass. PLoS ONE 12, e0169989 (2017).
pubmed: 28103254
pmcid: 5245892
doi: 10.1371/journal.pone.0169989
Ernits, K., Eek, P., Lukk, T., Visnapuu, T. & Alamae, T. First crystal structure of an endo-levanase—the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci. Rep. 9, 8443 (2019).
pubmed: 31186460
pmcid: 6560043
doi: 10.1038/s41598-019-44785-0
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).
pubmed: 20420522
pmcid: 3108441
doi: 10.1146/annurev.micro.112408.134247
Koebnik, R. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 13, 343–347 (2005).
pubmed: 15993072
doi: 10.1016/j.tim.2005.06.005
Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 35, 5326–5327 (2019).
pubmed: 31263867
doi: 10.1093/bioinformatics/btz536
Cobessi, D. et al. The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol. 347, 121–134 (2005).
pubmed: 15733922
doi: 10.1016/j.jmb.2005.01.021
Garcia-Herrero, A. & Vogel, H. J. Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol. Microbiol. 58, 1226–1237 (2005).
pubmed: 16313612
doi: 10.1111/j.1365-2958.2005.04889.x
Malki, I. et al. Interaction of a partially disordered antisigma factor with its partner, the signaling domain of the TonB-dependent transporter HasR. PLoS ONE 9, e89502 (2014).
pubmed: 24727671
pmcid: 3984077
doi: 10.1371/journal.pone.0089502
Jensen, J. L., Jernberg, B. D., Sinha, S. C. & Colbert, C. L. Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria. J. Biol. Chem. 295, 5795–5806 (2020).
pubmed: 32107313
pmcid: 7186176
doi: 10.1074/jbc.RA119.010697
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).
pubmed: 19403529
pmcid: 2709373
doi: 10.1074/jbc.M109.008094
Josts, I., Veith, K. & Tidow, H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. Elife 8, e48528 (2019).
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
pubmed: 26112186
pmcid: 4491172
doi: 10.1038/ncomms8481
Shipman, J. A., Cho, K. H., Siegel, H. A. & Salyers, A. A. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 181, 7206–7211 (1999).
pubmed: 10572122
pmcid: 103681
doi: 10.1128/JB.181.23.7206-7211.1999
Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).
pubmed: 18611383
pmcid: 2563962
doi: 10.1016/j.str.2008.03.017
Kailemia, M. J., Ruhaak, L. R., Lebrilla, C. B. & Amster, I. J. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86, 196–212 (2014).
pubmed: 24313268
doi: 10.1021/ac403969n
Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).
pubmed: 29860391
pmcid: 6031066
doi: 10.1093/nar/gky473
Gharsallaoui, A., Barbara, R., Génotelle, J. & Mathlouthi, M. Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chem. 106, 1443–1453 (2008).
doi: 10.1016/j.foodchem.2007.02.047
Cho, K. H. & Salyers, A. A. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 183, 7224–7230 (2001).
pubmed: 11717282
pmcid: 95572
doi: 10.1128/JB.183.24.7224-7230.2001
Karunatilaka, K. S., Cameron, E. A., Martens, E. C., Koropatkin, N. M. & Biteen, J. S. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. mBio 5, e02172 (2014).
pubmed: 25389179
pmcid: 4235215
doi: 10.1128/mBio.02172-14
Tuson, H. H., Foley, M. H., Koropatkin, N. M. & Biteen, J. S. The starch utilization system assembles around stationary starch-binding proteins. Biophys. J. 115, 242–250 (2018).
pubmed: 29338841
pmcid: 6051301
doi: 10.1016/j.bpj.2017.12.015
Tauzin, A. S. et al. Molecular dissection of xyloglucan recognition in a prominent human gut symbiont. mBio 7, e02134–15 (2016).
pubmed: 27118585
pmcid: 4850273
doi: 10.1128/mBio.02134-15
Fanucci, G. E., Cadieux, N., Kadner, R. J. & Cafiso, D. S. Competing ligands stabilize alternate conformations of the energy coupling motif of a TonB-dependent outer membrane transporter. Proc. Natl Acad. Sci. USA 100, 11382–11387 (2003).
pubmed: 13679579
doi: 10.1073/pnas.1932486100
Pawelek, P. D. et al. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312, 1399–1402 (2006).
pubmed: 16741125
doi: 10.1126/science.1128057
Shultis, D. D., Purdy, M. D., Banchs, C. N. & Wiener, M. C. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312, 1396–1399 (2006).
pubmed: 16741124
doi: 10.1126/science.1127694
Winter, G., Lobley, C. M. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D 69, 1260–1273 (2013).
pubmed: 23793152
doi: 10.1107/S0907444913015308
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).
doi: 10.1107/S2059798317017235
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840
pmcid: 2483472
doi: 10.1107/S0021889807021206
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).
pubmed: 22505263
doi: 10.1107/S090744491200251X
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
pmcid: 3690530
doi: 10.1016/j.jsb.2012.09.006
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Li, X., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184, 251–260 (2013).
pubmed: 23968652
doi: 10.1016/j.jsb.2013.08.005
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Schmidt, E. & Guntert, P. A new algorithm for reliable and general NMR resonance assignment. J. Am. Chem. Soc. 134, 12817–12829 (2012).
pubmed: 22794163
doi: 10.1021/ja305091n
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).
pubmed: 19548092
pmcid: 2726990
doi: 10.1007/s10858-009-9333-z
Guntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).
pubmed: 15318003
Silbir, S., Dagbagli, S., Yegin, S., Baysal, T. & Goksungur, Y. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr. Polym. 99, 454–461 (2014).
pubmed: 24274530
doi: 10.1016/j.carbpol.2013.08.031
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
doi: 10.1002/pro.3235