Insights into SusCD-mediated glycan import by a prominent gut symbiont.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 01 2021
Historique:
received: 23 06 2020
accepted: 19 11 2020
entrez: 5 1 2021
pubmed: 6 1 2021
medline: 14 1 2021
Statut: epublish

Résumé

In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a "pedal bin" transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.

Identifiants

pubmed: 33398001
doi: 10.1038/s41467-020-20285-y
pii: 10.1038/s41467-020-20285-y
pmc: PMC7782687
doi:

Substances chimiques

Bacterial Proteins 0
Ligands 0
Oligosaccharides 0
Polysaccharides 0
fructooligosaccharide 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

44

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P003192/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 215064/Z/18/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 108466/Z/15/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N020413/1
Pays : United Kingdom

Références

Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
doi: 10.1038/nature11234
Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).
pubmed: 26338727 doi: 10.1136/gutjnl-2015-309990
Sommer, F. & Backhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).
pubmed: 23435359 doi: 10.1038/nrmicro2974
Cantarel, B. L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 7, e28742 (2012).
pubmed: 22719820 pmcid: 3374616 doi: 10.1371/journal.pone.0028742
Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).
pubmed: 25088686 doi: 10.1016/j.jmb.2014.07.028
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
pubmed: 22491358 pmcid: 4005082 doi: 10.1038/nrmicro2746
Cockburn, D. W. & Koropatkin, N. M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428, 3230–3252 (2016).
pubmed: 27393306 doi: 10.1016/j.jmb.2016.06.021
Makki, K., Deehan, E. C., Walter, J. & Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).
pubmed: 29902436 doi: 10.1016/j.chom.2018.05.012
Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).
pubmed: 24388214 doi: 10.1016/B978-0-12-800100-4.00003-9
Wexler, A. G. & Goodman, A. L. An insider’s perspective: bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).
Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
pubmed: 22205877 pmcid: 3243724 doi: 10.1371/journal.pbio.1001221
Ndeh, D. & Gilbert, H. J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 42, 146–164 (2018).
pubmed: 29325042 doi: 10.1093/femsre/fuy002
Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
pubmed: 19553672 pmcid: 2757170 doi: 10.1074/jbc.R109.022848
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).
pubmed: 18996345 pmcid: 2605320 doi: 10.1016/j.chom.2008.09.007
Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411 (2017).
pubmed: 28077872 pmcid: 5497811 doi: 10.1038/nature20828
Shipman, J. A., Berleman, J. E. & Salyers, A. A. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J. Bacteriol. 182, 5365–5372 (2000).
pubmed: 10986238 pmcid: 110978 doi: 10.1128/JB.182.19.5365-5372.2000
Madej, M. et al. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat. Microbiol. 5, 1016–1025 (2020).
Foley, M. H., Martens, E. C. & Koropatkin, N. M. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol. Microbiol. 108, 551–566 (2018).
pubmed: 29528148 pmcid: 5980745 doi: 10.1111/mmi.13949
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–U256 (2010).
pubmed: 20603004 pmcid: 2900928 doi: 10.1016/j.cell.2010.05.005
Oner, E. T., Hernandez, L. & Combie, J. Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol. Adv. 34, 827–844 (2016).
pubmed: 27178733 doi: 10.1016/j.biotechadv.2016.05.002
Vijn, I. & Smeekens, S. Fructan: more than a reserve carbohydrate? Plant Physiol. 120, 351–359 (1999).
pubmed: 10364386 pmcid: 1539216 doi: 10.1104/pp.120.2.351
Blake, J. D., Clarke, M. L., Jansson, P. E. & McNeil, K. E. Fructan from Erwinia herbicola. J. Bacteriol. 151, 1595–1597 (1982).
pubmed: 7107561 pmcid: 220442 doi: 10.1128/jb.151.3.1595-1597.1982
Benigar, E. et al. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan. Langmuir 30, 4172–4182 (2014).
pubmed: 24654746 doi: 10.1021/la500830j
Bolam, D. N. & Sonnenburg, J. L. Mechanistic insight into polysaccharide use within the intestinal microbiota. Gut Microbes 2, 86–90 (2011).
pubmed: 21637023 pmcid: 3225772 doi: 10.4161/gmic.2.2.15232
Mardo, K. et al. A highly active endo-levanase BT1760 of a dominant mammalian gut commensal bacteroides thetaiotaomicron cleaves not only various bacterial levans, but also levan of timothy grass. PLoS ONE 12, e0169989 (2017).
pubmed: 28103254 pmcid: 5245892 doi: 10.1371/journal.pone.0169989
Ernits, K., Eek, P., Lukk, T., Visnapuu, T. & Alamae, T. First crystal structure of an endo-levanase—the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci. Rep. 9, 8443 (2019).
pubmed: 31186460 pmcid: 6560043 doi: 10.1038/s41598-019-44785-0
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).
pubmed: 20420522 pmcid: 3108441 doi: 10.1146/annurev.micro.112408.134247
Koebnik, R. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 13, 343–347 (2005).
pubmed: 15993072 doi: 10.1016/j.tim.2005.06.005
Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 35, 5326–5327 (2019).
pubmed: 31263867 doi: 10.1093/bioinformatics/btz536
Cobessi, D. et al. The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol. 347, 121–134 (2005).
pubmed: 15733922 doi: 10.1016/j.jmb.2005.01.021
Garcia-Herrero, A. & Vogel, H. J. Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol. Microbiol. 58, 1226–1237 (2005).
pubmed: 16313612 doi: 10.1111/j.1365-2958.2005.04889.x
Malki, I. et al. Interaction of a partially disordered antisigma factor with its partner, the signaling domain of the TonB-dependent transporter HasR. PLoS ONE 9, e89502 (2014).
pubmed: 24727671 pmcid: 3984077 doi: 10.1371/journal.pone.0089502
Jensen, J. L., Jernberg, B. D., Sinha, S. C. & Colbert, C. L. Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria. J. Biol. Chem. 295, 5795–5806 (2020).
pubmed: 32107313 pmcid: 7186176 doi: 10.1074/jbc.RA119.010697
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).
pubmed: 19403529 pmcid: 2709373 doi: 10.1074/jbc.M109.008094
Josts, I., Veith, K. & Tidow, H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. Elife 8, e48528 (2019).
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
pubmed: 26112186 pmcid: 4491172 doi: 10.1038/ncomms8481
Shipman, J. A., Cho, K. H., Siegel, H. A. & Salyers, A. A. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 181, 7206–7211 (1999).
pubmed: 10572122 pmcid: 103681 doi: 10.1128/JB.181.23.7206-7211.1999
Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).
pubmed: 18611383 pmcid: 2563962 doi: 10.1016/j.str.2008.03.017
Kailemia, M. J., Ruhaak, L. R., Lebrilla, C. B. & Amster, I. J. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86, 196–212 (2014).
pubmed: 24313268 doi: 10.1021/ac403969n
Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).
pubmed: 29860391 pmcid: 6031066 doi: 10.1093/nar/gky473
Gharsallaoui, A., Barbara, R., Génotelle, J. & Mathlouthi, M. Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chem. 106, 1443–1453 (2008).
doi: 10.1016/j.foodchem.2007.02.047
Cho, K. H. & Salyers, A. A. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 183, 7224–7230 (2001).
pubmed: 11717282 pmcid: 95572 doi: 10.1128/JB.183.24.7224-7230.2001
Karunatilaka, K. S., Cameron, E. A., Martens, E. C., Koropatkin, N. M. & Biteen, J. S. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. mBio 5, e02172 (2014).
pubmed: 25389179 pmcid: 4235215 doi: 10.1128/mBio.02172-14
Tuson, H. H., Foley, M. H., Koropatkin, N. M. & Biteen, J. S. The starch utilization system assembles around stationary starch-binding proteins. Biophys. J. 115, 242–250 (2018).
pubmed: 29338841 pmcid: 6051301 doi: 10.1016/j.bpj.2017.12.015
Tauzin, A. S. et al. Molecular dissection of xyloglucan recognition in a prominent human gut symbiont. mBio 7, e02134–15 (2016).
pubmed: 27118585 pmcid: 4850273 doi: 10.1128/mBio.02134-15
Fanucci, G. E., Cadieux, N., Kadner, R. J. & Cafiso, D. S. Competing ligands stabilize alternate conformations of the energy coupling motif of a TonB-dependent outer membrane transporter. Proc. Natl Acad. Sci. USA 100, 11382–11387 (2003).
pubmed: 13679579 doi: 10.1073/pnas.1932486100
Pawelek, P. D. et al. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312, 1399–1402 (2006).
pubmed: 16741125 doi: 10.1126/science.1128057
Shultis, D. D., Purdy, M. D., Banchs, C. N. & Wiener, M. C. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312, 1396–1399 (2006).
pubmed: 16741124 doi: 10.1126/science.1127694
Winter, G., Lobley, C. M. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D 69, 1260–1273 (2013).
pubmed: 23793152 doi: 10.1107/S0907444913015308
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).
doi: 10.1107/S2059798317017235
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).
pubmed: 22505263 doi: 10.1107/S090744491200251X
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Li, X., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184, 251–260 (2013).
pubmed: 23968652 doi: 10.1016/j.jsb.2013.08.005
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Schmidt, E. & Guntert, P. A new algorithm for reliable and general NMR resonance assignment. J. Am. Chem. Soc. 134, 12817–12829 (2012).
pubmed: 22794163 doi: 10.1021/ja305091n
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).
pubmed: 19548092 pmcid: 2726990 doi: 10.1007/s10858-009-9333-z
Guntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).
pubmed: 15318003
Silbir, S., Dagbagli, S., Yegin, S., Baysal, T. & Goksungur, Y. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr. Polym. 99, 454–461 (2014).
pubmed: 24274530 doi: 10.1016/j.carbpol.2013.08.031
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235

Auteurs

Declan A Gray (DA)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.

Joshua B R White (JBR)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

Abraham O Oluwole (AO)

Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.

Parthasarathi Rath (P)

Biozentrum, University of Basel, Basel, Switzerland.

Amy J Glenwright (AJ)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.

Adam Mazur (A)

Biozentrum, University of Basel, Basel, Switzerland.

Michael Zahn (M)

Biozentrum, University of Basel, Basel, Switzerland.

Arnaud Baslé (A)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.

Carl Morland (C)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.

Sasha L Evans (SL)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

Alan Cartmell (A)

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.

Carol V Robinson (CV)

Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.

Sebastian Hiller (S)

Biozentrum, University of Basel, Basel, Switzerland.

Neil A Ranson (NA)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

David N Bolam (DN)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. david.bolam@ncl.ac.uk.

Bert van den Berg (B)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. bert.van-den-berg@ncl.ac.uk.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH