Environmental patterns of brown moss- and Sphagnum-associated microbial communities.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 12 2020
29 12 2020
Historique:
received:
11
05
2020
accepted:
02
12
2020
entrez:
30
12
2020
pubmed:
31
12
2020
medline:
28
4
2021
Statut:
epublish
Résumé
Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.
Identifiants
pubmed: 33376244
doi: 10.1038/s41598-020-79773-2
pii: 10.1038/s41598-020-79773-2
pmc: PMC7772339
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22412Références
Ecology. 2010 Sep;91(9):2716-26
pubmed: 20957965
Microb Ecol. 2009 Nov;58(4):703-14
pubmed: 19662454
ISME J. 2011 Oct;5(10):1571-9
pubmed: 21472016
Microb Ecol. 2015 Feb;69(2):395-406
pubmed: 25395291
Front Microbiol. 2015 Dec 15;6:1346
pubmed: 26696968
Microb Ecol. 2003 Aug;46(2):187-99
pubmed: 14708744
FEMS Microbiol Ecol. 2016 Aug;92(8):
pubmed: 27230921
Appl Environ Microbiol. 1998 Dec;64(12):4789-95
pubmed: 9835563
Mol Ecol. 2015 Sep;24(18):4795-807
pubmed: 26335913
New Phytol. 2013 Oct;200(1):54-60
pubmed: 23795916
Front Microbiol. 2015 May 12;6:356
pubmed: 26029170
Int J Syst Evol Microbiol. 2011 Oct;61(Pt 10):2456-2463
pubmed: 21097638
Front Microbiol. 2012 Jan 23;3:15
pubmed: 22291695
Int J Syst Evol Microbiol. 2015 Oct;65(10):3618-3624
pubmed: 26297585
Appl Environ Microbiol. 2000 Dec;66(12):5488-91
pubmed: 11097934
Can J Microbiol. 2006 Feb;52(2):140-9
pubmed: 16541150
Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):251-261
pubmed: 11837310
Nature. 2001 Jan 11;409(6817):149
pubmed: 11196627
Front Microbiol. 2015 Aug 25;6:867
pubmed: 26379644
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
ISME J. 2007 Oct;1(6):502-16
pubmed: 18043652
ISME J. 2018 Aug;12(8):1918-1928
pubmed: 29662145
Microbiome. 2018 Jun 8;6(1):102
pubmed: 29884244
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31
pubmed: 16407148
Sci Rep. 2017 Mar 21;7:45028
pubmed: 28322330
Environ Microbiol. 2007 Jan;9(1):107-17
pubmed: 17227416
Phytochemistry. 1999 Dec;52(8):1479-82
pubmed: 10647220
ISME J. 2012 Mar;6(3):610-8
pubmed: 22134646
Philos Trans A Math Phys Eng Sci. 2005 Dec 15;363(1837):2891-913
pubmed: 16286296
Ecology. 2010 Aug;91(8):2356-65
pubmed: 20836457
Front Microbiol. 2014 Jun 04;5:148
pubmed: 24926286
Appl Environ Microbiol. 2006 Mar;72(3):2110-7
pubmed: 16517660
Nature. 2005 Aug 25;436(7054):1153-6
pubmed: 16121180
Sci Rep. 2013;3:1955
pubmed: 23739741
Bioinformatics. 2014 Mar 1;30(5):614-20
pubmed: 24142950
Environ Microbiol. 2014 Jan;16(1):72-83
pubmed: 24914433
Front Microbiol. 2012 Jan 10;2:275
pubmed: 22294982
Adv Microb Physiol. 2009;55:1-79, 317
pubmed: 19573695
Sci Rep. 2017 Sep 12;7(1):11314
pubmed: 28900257
Environ Microbiol. 2018 Jul;20(7):2625-2638
pubmed: 29901277
Annu Rev Plant Biol. 2013;64:807-38
pubmed: 23373698
Appl Environ Microbiol. 2014 Sep;80(18):5761-72
pubmed: 25015892
Environ Microbiol. 2007 Nov;9(11):2795-809
pubmed: 17922763
J Appl Microbiol. 2009 Mar;106(3):967-76
pubmed: 19187129
Front Microbiol. 2017 Jul 18;8:1339
pubmed: 28769904
FEMS Microbiol Ecol. 2007 Jul;61(1):38-53
pubmed: 17484734
Environ Microbiol Rep. 2012 Oct;4(5):522-31
pubmed: 23760897
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Front Microbiol. 2017 Jan 24;8:12
pubmed: 28174556
Sci Total Environ. 2017 Feb 15;580:1429-1438
pubmed: 28038871
Appl Environ Microbiol. 2000 Nov;66(11):5066-72
pubmed: 11055964
Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):151-156
pubmed: 14742473
ISME J. 2013 Feb;7(2):299-311
pubmed: 22955232
ISME J. 2012 Apr;6(4):802-13
pubmed: 22094342
Science. 2006 Oct 13;314(5797):285-8
pubmed: 17038618