Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration.
ecological status
hydrology
nutrients
riparian land use
river types
stressor interactions
toxic substances
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
16
11
2020
received:
02
04
2020
accepted:
11
12
2020
pubmed:
30
12
2020
medline:
24
4
2021
entrez:
29
12
2020
Statut:
ppublish
Résumé
The biota of European rivers are affected by a wide range of stressors impairing water quality and hydro-morphology. Only about 40% of Europe's rivers reach 'good ecological status', a target set by the European Water Framework Directive (WFD) and indicated by the biota. It is yet unknown how the different stressors in concert impact ecological status and how the relationship between stressors and status differs between river types. We linked the intensity of seven stressors to recently measured ecological status data for more than 50,000 sub-catchment units (covering almost 80% of Europe's surface area), which were distributed among 12 broad river types. Stressor data were either derived from remote sensing data (extent of urban and agricultural land use in the riparian zone) or modelled (alteration of mean annual flow and of base flow, total phosphorous load, total nitrogen load and mixture toxic pressure, a composite metric for toxic substances), while data on ecological status were taken from national statutory reporting of the second WFD River Basin Management Plans for the years 2010-2015. We used Boosted Regression Trees to link ecological status to stressor intensities. The stressors explained on average 61% of deviance in ecological status for the 12 individual river types, with all seven stressors contributing considerably to this explanation. On average, 39.4% of the deviance was explained by altered hydro-morphology (morphology: 23.2%; hydrology: 16.2%), 34.4% by nutrient enrichment and 26.2% by toxic substances. More than half of the total deviance was explained by stressor interaction, with nutrient enrichment and toxic substances interacting most frequently and strongly. Our results underline that the biota of all European river types are determined by co-occurring and interacting multiple stressors, lending support to the conclusion that fundamental management strategies at the catchment scale are required to reach the ambitious objective of good ecological status of surface waters.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1962-1975Subventions
Organisme : European Commission: FP7 Environment
Organisme : Dutch 'Water Quality Knowledge Impulse' project
Informations de copyright
© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Références
Alexander, A. C., Culp, J. M., Baird, D. J., & Cessna, A. J. (2016). Nutrient-insecticide interactions decouple density-dependent predation pressure in aquatic insects. Freshwater Biology, 61, 2090-2101. https://doi.org/10.1111/fwb.12711
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., & Feyen, L. (2014). Advances in pan-European flood hazard mapping. Hydrological Processes, 28, 4067-4077. https://doi.org/10.1002/hyp.9947
Altermatt, F., Little, C. J., Mächler, E., Wang, S., Zhang, X., & Blackman, R. C. (2020). Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems. Oikos, 129, 607-618. https://doi.org/10.1111/oik.06806
Bates, P. D., & de Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54-77. https://doi.org/10.1016/S0022-1694(00)00278-X
Beermann, A., Elbrecht, V., Karnatz, S., Ma, L., Matthaei, C. D., Piggott, J. J., & Leese, F. (2018). Multiple-stressor effects on stream macroinvertebrate communities: A mesocosm experiment manipulating salinity, fine sediment and flow velocity. Science of the Total Environment, 610, 961-971. https://doi.org/10.1016/j.scitotenv.2017.08.084
Beketov, M. A., Kefford, B. J., Schäfer, R. B., & Liess, M. (2013). Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 110, 11039-11043. https://doi.org/10.1073/pnas.1305618110
Berger, E., Haase, P., Kuemmerlen, M., Leps, M., Schäfer, R. B., & Sundermann, A. (2017). Water quality variables and pollution sources shaping stream macroinvertebrate communities. Science of the Total Environment, 587, 1-10. https://doi.org/10.1016/j.scitotenv.2017.02.031
Birk, S. (2019). Detecting and quantifying the impact of multiple stress on river ecosystems. In S. Sabater, R. Ludwig, & A. Elosegi (Eds.), Multiple stress in river ecosystems. Status, impacts and prospects for the future (1st ed., pp. 235-253). Academic Press.
Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., van de Bund, W., Zampoukas, N., & Hering, D. (2012). Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 18, 31-41. https://doi.org/10.1016/j.ecolind.2011.10.009
Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioğlu, M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D., Cardoso, A. C., Couture, R.-M., Cremona, F., de Zwart, D., … Hering, D. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 4, 1060-1068. https://doi.org/10.1038/s41559-020-1216-4
Carvalho, L., Mackay, E. B., Cardoso, A. C., Baattrup-Pedersen, A., Birk, S., Blackstock, K. L., Borics, G., Borja, A., Feld, C. K., Ferreira, M. T., Globevnik, L., Grizzetti, B., Hendry, S., Hering, D., Kelly, M., Langaas, S., Meissner, K., Panagopoulos, Y., Penning, E., … Lyche Solheim, A. (2019). Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 658, 1228-1238. https://doi.org/10.1016/j.scitotenv.2018.12.255
Chase, J. W., Benoy, G. A., & Culp, J. M. (2017). Combined effects of nutrient enrichment and inorganic sedimentation on benthic biota in an experimental stream system. Water Quality Research Journal, 52, 151-165. https://doi.org/10.2166/wqrj.2017.038
Copernicus Land Monitoring Service [CLMS]. (2019). Riparian zones land use land cover. Retrieved from https://land.copernicus.eu/local/riparian-zones/land-cover-land-use-lclu-image?tab=metadata
Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B: Biological Sciences, 283, 20152592. https://doi.org/10.1098/rspb.2015.2592
Couto, T. B. A., & Olden, J. D. (2018). Global proliferation of small hydropower plants - Science and policy. Frontiers in Ecology and the Environment, 16, 91-100. https://doi.org/10.1002/fee.1746
Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 1304-1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
De Laender, F. (2018). Community- and ecosystem-level effects of multiple environmental change drivers: Beyond null model testing. Global Change Biology, 24, 5021-5030. https://doi.org/10.1111/gcb.14382
De Zwart, D., & Posthuma, L. (2005). Complex mixture toxicity for single and multiple species: Proposed methodologies. Environmental Toxicology and Chemistry, 24, 2665-2676. https://doi.org/10.1897/04-639r.1
Derville, S., Constantine, R., Baker, C. S., Oremus, M., & Torres, L. G. (2016). Environmental correlates of nearshore habitat distribution by the critically endangered Maui dolphin. Marine Ecology Progress Series, 551, 261-275. https://doi.org/10.3354/meps11736
Elbrecht, V., Beermann, A. J., Goessler, G., Neumann, J., Tollrian, R., Wagner, R., Wlecklik, A., Piggott, J. J., Matthaei, C. D., & Leese, F. (2016). Multiple-stressor effects on stream invertebrates: A mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshwater Biology, 61, 362-375. https://doi.org/10.1111/fwb.12713
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
European Commission. (2000). Directive 2000/60/EC of the European Parliament and of the council of 23rd October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327/1. European Commission, Brussels. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32000L0060&from=EN
European Communities. (2005). Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document No 13. Overall Approach to the Classification of Ecological Status and Ecological Potential. Office for Official Publications of the European Communities, Luxembourg. Retrieved from https://ec.europa.eu/environment/water/water-framework/facts_figures/guidance_docs_en.htm
European Environment Agency [EEA]. (2012a). EEA Catchments and Rivers Network System ECRINS v1.1. Rationales, building and improving for widening uses to Water Accounts and WISE applications. EEA Technical Report No7/2012. EEA, Copenhagen, 111 pp. Retrieved from https://www.eea.europa.eu/ds_resolveuid/P2Z9F5AHUV
European Environment Agency [EEA]. (2012b). European waters - Assessment of status and pressures. EEA Report No 8/2012. EEA, Copenhagen, 96 pp. Retrieved from https://www.eea.europa.eu/publications/european-waters-assessment-2012
European Environment Agency [EEA]. (2015). Riparian Zone-Final delivery report. Issue 3.3. Retrieved from https://land.copernicus.eu/local/riparian-zones/riparian-zones-delineation
European Environment Agency [EEA]. (2018a). European waters - Assessment of status and pressures 2018. EEA Report No 7/2018. EEA, Copenhagen. Retrieved from https://www.eea.europa.eu/publications/state-of-water
European Environment Agency [EEA]. (2018b). WISE Water Framework Directive Database. Retrieved from https://www.eea.europa.eu/data-and-maps/data/wise-wfd-3
Fuller, I. C., & Death, R. G. (2018). The science of connected ecosystems: What is the role of catchment-scale connectivity for healthy river ecology? Land Degradation and Development, 29, 1413-1426. https://doi.org/10.1002/ldr.2903
Gieswein, A., Hering, D., & Feld, C. K. (2017). Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Science of the Total Environment, 593-594, 27-35. https://doi.org/10.1016/j.scitotenv.2017.03.116
Globevnik, L., Koprivsek, M., & Snoj, L. (2017). Metadata to the MARS spatial database. Freshwater Metadata Journal, 21, 1-7. https://doi.org/10.15504/fmj.2017.21
Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., & van de Bund, W. (2017). Human pressures and ecological status of European rivers. Scientific Reports, 7, 205. https://doi.org/10.1038/s41598-017-00324-3
Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A.-S., Johnson, R. K., Moe, J., Pont, D., Solheim, A. L., & van de Bund, W. (2010). The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment, 408, 4007-4019. https://doi.org/10.1016/j.scitotenv.2010.05.031
Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). dismo: Species Distribution Modeling. R package version 1.1-4. Retrieved from https://CRAN.R-project.org/package=dismo
Huđek, H., Žganec, K., & Pusch, M. T. (2020). A review of hydropower dams in Southeast Europe - Distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renewable and Sustainable Energy Reviews, 117, 109434. https://doi.org/10.1016/j.rser.2019.109434
Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Global Change Biology, 22, 180-189. https://doi.org/10.1111/gcb.13028
Kampa, E., & Hansen, W. (2004). Definition of good ecological potential. In Heavily modified water bodies (pp. 153-163). International and European Environmental Policy Series. Springer. https://doi.org/10.1007/978-3-642-18647-9_10
Lemm, J. U., & Feld, C. K. (2017). Identification and interaction of multiple stressors in central European lowland rivers. Science of the Total Environment, 603-604, 148-154. https://doi.org/10.1016/j.scitotenv.2017.06.092
Liess, M., Foit, K., Knillmann, S., Schäfer, R. B., & Liess, H. D. (2016). Predicting the synergy of multiple stress effects. Scientific Reports, 6, 32965. https://doi.org/10.1038/srep32965
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research, 41, 295-319. https://doi.org/10.2166/nh.2010.007
Lorenz, A. W., & Feld, C. K. (2013). Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia, 704, 489-501. https://doi.org/10.1007/s10750-012-1326-3
Lyche Solheim, A., Globevnik, L., Austnes, K., Kristensen, P., Moe, S. J., Persson, J., Phillips, G., Poikane, S., van de Bund, W., & Birk, S. (2019). A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Science of the Total Environment, 697, 134043. https://doi.org/10.1016/j.scitotenv.2019.134043
Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111, 9549-9554. https://doi.org/10.1073/pnas.1321082111
Matthaei, C. D., Piggott, J. J., & Townsend, C. R. (2010). Multiple stressors in agricultural streams: Interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology, 47, 639-649. https://doi.org/10.1111/j.1365-2664.2010.01809.x
Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the American Society of Agricultural and Biological Engineers, 58, 1763-1785. https://doi.org/10.13031/trans.58.10715
Nõges, P., van de Bund, W., Cardoso, A. C., Solimini, A. G., & Heiskanen, A. S. (2009). Assessment of the ecological status of European surface waters: A work in progress. Hydrobiologia, 633, 197-211. https://doi.org/10.1007/s10750-009-9883-9
Orr, J. A., Vinebrooke, R. D., Jackson, M. C., Kroeker, K. J., Kordas, R. L., Mantyka-Pringle, C., van den Brink, P. J., de Laender, F., Stoks, R., Holmstrup, M., Matthaei, C. D., Monk, W. A., Penk, M. R., Leuzinger, S., Schäfer, R. B., & Piggott, J. J. (2020). Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proceedings of the Royal Society B: Biological Sciences, 287, 20200421. https://doi.org/10.1098/rspb.2020.0421
Panagopoulos, Y., Stefanidis, K., Sanchez, M. F., Weiland, F. S., Van Beek, R., Venohr, M., Globevnik, L., Mimikou, M., & Birk, S. (2019). Pan-European calculation of hydrologic stress metrics in rivers: A first assessment with potential connections to ecological status. Water, 11, 703. https://doi.org/10.3390/w11040703
Nõges, P., Argillier, C., Borja, Á., Mikel, J., Kode, V., Pletterbauer, F., Sagouis, A., & Birk, S. (2016). Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. The Science of the Total Environment, 540, 43-52. https://doi.org/10.1016/j.scitotenv.2015.06.045
Piggott, J. J., Lange, K., Townsend, C. R., & Matthaei, C. D. (2012). Multiple stressors in agricultural streams: A mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS ONE, 7, e49873. https://doi.org/10.1371/journal.pone.0049873
Poikane, S., Zampoukas, N., Borja, A., Davies, S. P., van de Bund, W., & Birk, S. (2014). Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward. Environmental Science and Policy, 44, 237-246. https://doi.org/10.1016/j.envsci.2014.08.006
Posthuma, L., & De Zwart, D. (2006). Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, Rivers. Environmental Toxicology and Chemistry, 25, 1094-1105. https://doi.org/10.1897/05-305r.1
Posthuma, L., de Zwart, D., & Dyer, S. D. (2019). Chemical mixtures affect freshwater species assemblages: From problems to solutions. Current Opinion in Environmental Science and Health, 11, 78-89. https://doi.org/10.1016/j.coesh.2019.09.002
Posthuma, L., van Gils, J., Zijp, M. C., van de Meent, D., & de Zwart, D. (2019). Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environmental Toxicology and Chemistry, 38, 703-711. https://doi.org/10.1002/etc.4373
Posthuma, L., Zijp, M. C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., & Birk, S. (2020). Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 10, 14825. https://doi.org/10.1038/s41598-020-71537-2
Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Friberg, N., & Kronvang, B. (2012). Stream habitat structure influences macroinvertebrate response to pesticides. Environmental Pollution, 164, 142-149. https://doi.org/10.1016/j.envpol.2012.01.007
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849-873. https://doi.org/10.1111/brv.12480
Rice, J., & Westerhoff, P. (2017). High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nature Geoscience, 10, 587-591. https://doi.org/10.1038/ngeo2984
Richter, B., Baumgartner, J., Powell, J., & Braun, D. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10, 1163-1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x
Schäfer, R. B., Gerner, N., Kefford, B. J., Rasmussen, J. J., Beketov, M. A., De Zwart, D., Liess, M., & von Der Ohe, P. C. (2013). How to characterize chemical exposure to predict ecologic effects on aquatic communities? Environmental Science and Technology, 47, 7996-8004. https://doi.org/10.1021/es4014954
Schäfer, R. B., & Piggott, J. J. (2018). Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Global Change Biology, 24, 1817-1826. https://doi.org/10.1111/gcb.14073
Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., Mannio, J., Monteith, D. T., Mosello, R., Rogora, M., Rzychon, D., Vesely, J., Wieting, J., Wilander, A., & Worsztynowicz, A. (2005). Regional scale evidence for improvements in surface water chemistry 1990-2001. Environmental Pollution, 137, 165-176. https://doi.org/10.1016/j.envpol.2004.12.023
Søndergaard, M., & Jeppesen, M. (2015). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44, 1089-1094. https://doi.org/10.1111/j.1365-2664.2007.01426.x
Stubbington, R., Chadd, R., Cid, N., Csabai, Z., Miliša, M., Morais, M., Munné, A., Pařil, P., Pešić, V., Tziortzis, I., Verdonschot, R. C. M., & Datry, T. (2018). Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Science of the Total Environment, 618, 1096-1113. https://doi.org/10.1016/j.scitotenv.2017.09.137
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., & Bierkens, M. F. P. (2018). PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11, 2429-2453. https://doi.org/10.5194/gmd-11-2429-2018
The Nature Conservancy. (2009). Indicators of Hydrologic Alteration Version 7.1 User's Manual. Retrieved from https://www.conservationgateway.org/Documents/IHAV7.pdf
Thorp, J. H. (2014). Metamorphosis in river ecology: From reaches to macrosystems. Freshwater Biology, 59, 200-210. https://doi.org/10.1111/fwb.12237
Tockner, K., Pusch, M., Borchardt, D., & Lorang, M. S. (2010). Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biology, 55, 135-151. https://doi.org/10.1111/j.1365-2427.2009.02371.x
Van den Brink, P., Choung, C., Landis, W., Mayer-Pinto, M., Pettigrove, V., Scanes, P., Smith, R., & Stauber, J. (2016). New approaches to the ecological risk assessment of multiple stressors. Marine and Freshwater Research, 67, 429-439. https://doi.org/10.1071/MF15111
van Gils, J., Posthuma, L., Cousins, I., Brack, W., Altenburger, R., Baveco, H., Focks, A., Greskowiak, J., Kuehne, R., Kutsarova, S., Lindim, C., Markus, A., van de Meent, D., Munthe, J., Schueder, R., Schuurmann, G., Slobodnik, J., de Zwart, D., & van Wezel, A. (2020). Computational material flow analysis for thousands of chemicals of emerging concern in European waters. Journal of Hazardous Materials, 397, 122655. https://doi.org/10.1016/j.jhazmat.2020.122655
van Gils, J., Posthuma, L., Cousins, I. T., Lindim, C., de Zwart, D., Bunke, D., Kutsarova, S., Müller, C., Munthe, J., Slobodnik, J., & Brack, W. (2019). The European Collaborative Project SOLUTIONS developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern. Environmental Sciences Europe, 31, 72. https://doi.org/10.1186/s12302-019-0248-3
Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., Natho, S., Neumann, F., Hürdler, J., Matranga, M., Mahnkopf, J., Gadegast, M., & Behrendt, H. (2011). Modelling of nutrient emissions in river systems - MONERIS - Methods and background. International Review of Hydrobiology, 96, 435-483. https://doi.org/10.1002/iroh.201111331
von der Ohe, P. C., & Goedkoop, W. (2013). Distinguishing the effects of habitat degradation and pesticide stress on benthic invertebrates using stressor-specific metrics. Science of the Total Environment, 444, 480-490. https://doi.org/10.1016/j.scitotenv.2012.12.001
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440
Wagenhoff, A., Townsend, C. R., & Matthaei, C. D. (2012). Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. Journal of Applied Ecology, 49, 892-902. https://doi.org/10.1111/j.1365-2664.2012.02162.x
Wallin, M., Wiederholm, T., & Johnson, R. K. (2003). Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. CIS Working Group 2.3 - REFCOND. Final version 7.0, 93 pp. Retrieved from https://circabc.europa.eu/sd/a/69bc735b-ba37-40a7-841c-22255577cc0a/GD-%20-%20REFCOND%20-%20Policy%20Summary.pdf
Zal, N., Bariamis, G., Zachos, A., Baltas, E., & Mimikou, M. (2017). Use of Freshwater Resources in Europe 2002-2014 - An assessment based on water quantity accounts. ETC/ICM Technical Report 1/2017. ETC/ICM, Magdeburg. Retrieved from https://www.eionet.europa.eu/etcs/etc-icm/products/etc-icm-reports/use-of-freshwater-resources-in-europe-2002-2014-an-assessment-based-on-water-quantity-accounts
Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data, statistics for biology and health New York. Springer.