Novel method to produce a layered 3D scaffold for human pluripotent stem cell-derived neuronal cells.
Collagen 1
Electrospinning
Guidance cue
Hydrogel
Polylactide
Tissue engineering
Journal
Journal of neuroscience methods
ISSN: 1872-678X
Titre abrégé: J Neurosci Methods
Pays: Netherlands
ID NLM: 7905558
Informations de publication
Date de publication:
15 02 2021
15 02 2021
Historique:
received:
10
07
2020
revised:
10
12
2020
accepted:
11
12
2020
pubmed:
22
12
2020
medline:
1
7
2021
entrez:
21
12
2020
Statut:
ppublish
Résumé
Three-dimensional (3D) in vitro models have been developed into more in vivo resembling structures. In particular, there is a need for human-based models for neuronal tissue engineering (TE). To produce such a model with organized microenvironment for cells in central nervous system (CNS), a 3D layered scaffold composed of hydrogel and cell guiding fibers has been proposed. Here, we describe a novel method for producing a layered 3D scaffold consisting of electrospun poly (L,D-lactide) fibers embedded into collagen 1 hydrogel to achieve better resemblance of cells' natural microenvironment for human pluripotent stem cell (hPSC)-derived neurons. The scaffold was constructed via a single layer-by-layer process using an electrospinning technique with a unique collector design. The method enabled the production of layered 3D cell-containing scaffold in a single process. HPSC-derived neurons were found in all layers of the scaffold and exhibited a typical neuronal phenotype. The guiding fiber layers supported the directed cell growth and extension of the neurites inside the scaffold without additional functionalization. Previous methods have required several process steps to construct 3D layer-by-layer scaffolds. We introduced a method to produce layered 3D scaffolds to mimic the cell guiding cues in CNS by alternating the soft hydrogel matrix and fibrous guidance cues. The produced scaffold successfully enabled the long-term culture of hPSC-derived neuronal cells. This layered 3D scaffold is a useful model for in vitro and in vivo neuronal TE applications.
Sections du résumé
BACKGROUND
Three-dimensional (3D) in vitro models have been developed into more in vivo resembling structures. In particular, there is a need for human-based models for neuronal tissue engineering (TE). To produce such a model with organized microenvironment for cells in central nervous system (CNS), a 3D layered scaffold composed of hydrogel and cell guiding fibers has been proposed.
NEW METHOD
Here, we describe a novel method for producing a layered 3D scaffold consisting of electrospun poly (L,D-lactide) fibers embedded into collagen 1 hydrogel to achieve better resemblance of cells' natural microenvironment for human pluripotent stem cell (hPSC)-derived neurons. The scaffold was constructed via a single layer-by-layer process using an electrospinning technique with a unique collector design.
RESULTS
The method enabled the production of layered 3D cell-containing scaffold in a single process. HPSC-derived neurons were found in all layers of the scaffold and exhibited a typical neuronal phenotype. The guiding fiber layers supported the directed cell growth and extension of the neurites inside the scaffold without additional functionalization.
COMPARISON WITH EXISTING METHODS
Previous methods have required several process steps to construct 3D layer-by-layer scaffolds.
CONCLUSIONS
We introduced a method to produce layered 3D scaffolds to mimic the cell guiding cues in CNS by alternating the soft hydrogel matrix and fibrous guidance cues. The produced scaffold successfully enabled the long-term culture of hPSC-derived neuronal cells. This layered 3D scaffold is a useful model for in vitro and in vivo neuronal TE applications.
Identifiants
pubmed: 33345946
pii: S0165-0270(20)30466-0
doi: 10.1016/j.jneumeth.2020.109043
pii:
doi:
Substances chimiques
Hydrogels
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
109043Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.