Improved accuracy of quantitative birefringence imaging by polarization sensitive OCT with simple noise correction and its application to neuroimaging.

biomedical imaging birefringence noise optical coherence tomography polarization

Journal

Journal of biophotonics
ISSN: 1864-0648
Titre abrégé: J Biophotonics
Pays: Germany
ID NLM: 101318567

Informations de publication

Date de publication:
04 2021
Historique:
revised: 13 12 2020
received: 12 08 2020
accepted: 14 12 2020
pubmed: 18 12 2020
medline: 13 7 2021
entrez: 17 12 2020
Statut: ppublish

Résumé

Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.

Identifiants

pubmed: 33332741
doi: 10.1002/jbio.202000323
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202000323

Subventions

Organisme : European Research Council
ID : ERC Starting Grant 640396 OPTIMALZ
Pays : International

Informations de copyright

© 2020 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.

Références

J. F. de Boer, C. K. Hitzenberger, Y. Yasuno, Biomed. Opt. Express 2017, 8(3), 1838.
B. Baumann, Appl. Sci. 2017, 7(5), 474.
M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, J. Opt. Soc. Am. B 1992, 9(6), 903.
C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A. F. Fercher, Opt. Express 2001, 9(13), 780.
M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, Opt. Lett. 1998, 23(3), 228.
E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, Opt. Express 2011, 19(15), 14568.
D. Kasaragod, S. Makita, S. Fukuda, S. Beheregaray, T. Oshika, Y. Yasuno, Opt. Express 2014, 22(13), 16472.
M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, C. K. Hitzenberger, Biomed. Opt. Express 2014, 5(1), 106.
D. Kasaragod, S. Makita, Y.-J. Hong, Y. Yasuno, Biomed. Opt. Express 2017, 8(2), 653.
S. Makita, Y.-J. Hong, M. Miura, Y. Yasuno, Opt. Lett. 2014, 39(24), 6783.
K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, M. J. Everett, Appl. Optics 1998, 37(25), 6026.
E. Götzinger, M. Pircher, C. K. Hitzenberger, Opt. Express 2005, 13(25), 10217.
J. W. Goodman, Statistical Optics, John Wiley & Sons, Hoboken, NJ 2015.
M. Szkulmowski, M. Wojtkowski, Opt. Express 2013, 21(8), 9757.
B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, C. K. Hitzenberger, Invest. Ophthalmol. Vis. Sci. 2014, 55(11), 7686.
B. Baumann, C. W. Merkle, R. A. Leitgeb, M. Augustin, A. Wartak, M. Pircher, C. K. Hitzenberger, Biomed. Opt. Express 2019, 10(11), 5755.
S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, B. Baumann, Biomed. Opt. Express 2016, 7(4), 1479.
D. J. Harper, M. Augustin, A. Lichtenegger, J. Gesperger, T. Himmel, M. Muck, C. W. Merkle, P. Eugui, S. Kummer, A. Woehrer, M. Glösmann, B. Baumann, Neurophotonics 2020, 7(1), 015006.
M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, J. Biomed. Opt. 2007, 12(4), 041210.
B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, Opt. Lett. 2002, 27(18), 1610.
A. C. Chan, Y.-J. Hong, S. Makita, M. Miura, Y. Yasuno, Biomed. Opt. Express 2017, 8(4), 2069.
M. Yamanari, S. Makita, Y. Yasuno, Opt. Express 2008, 16(8), 5892.
M. K. Al-Qaisi, T. Akkin, Opt. Express 2010, 18(4), 3392.
E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, J. Biophotonics 2008, 1(2), 129.
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, T. Akkin, Neuroimage 2011, 58(4), 984.
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, D. Boas, Opt. Lett. 2016, 41(10), 2213.
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, C. K. Hitzenberger, Sci. Rep. 2017, 7, 43477.

Auteurs

Bernhard Baumann (B)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Danielle J Harper (DJ)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Pablo Eugui (P)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Johanna Gesperger (J)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.

Antonia Lichtenegger (A)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Conrad W Merkle (CW)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Marco Augustin (M)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Adelheid Woehrer (A)

Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.

Articles similaires

Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software
Algorithms Gravitation Signal Processing, Computer-Assisted Signal-To-Noise Ratio
Humans Male Female Tomography, Optical Coherence Aged

Classifications MeSH