Effect of Three Half-Squat Protocols on the Tensiomyographic Twitch Response and Tissue Damage of the Rectus Femoris and the Biceps Femoris.
fatigue
musculoskeletal
performance
strength training
Journal
Journal of human kinetics
ISSN: 1640-5544
Titre abrégé: J Hum Kinet
Pays: Poland
ID NLM: 101513031
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
entrez:
14
12
2020
pubmed:
15
12
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The aim of this study was to analyse the acute effects of a concentric exercise and two different eccentric overload exercises (EOEs) on blood markers of muscle damage (i.e. creatine kinase [CK], lactate dehydrogenase [LDH], myoglobin [Myo], and malondialdehyde [MDA]) and muscle contractile properties. Ten healthy, young (27 ± 1.5 years, 179 ± 6 cm, 78.7 ± 10.8 kg), physically active men (3.5 ± 1.9 h·w-1) randomly performed three training sessions using the following protocols: a half-squat (HS) as a concentric exercise, and exercises using Versapulley (VP) or YoYo isoinertial technology (YIT) as EOEs (4 x 7 repetitions with a 2 min rest interval between sets). Blood samples and tensiomyography measurements were obtained after each training session. Repeated measures analysis of variance (ANOVA) followed by the Tukey test was used to detect differences between the four time points of each variable. The standardized difference or effect size (ES, 90% confidence limit) in the selected variables was calculated using the basal SD. After all exercises, a greater activity of CK, LDH, and concentration of Myo, and MDA were found compared to baseline values (p < 0.05). A substantially greater activity of CK, LDH, and Myo concentration, but not MDA, were found after EOEs when compared to the HS protocol. Substantially lower tensiomyography results in the rectus femoris (RF) were reported, irrespective of the exercise mode performed. Also, no substantial differences were obtained in the biceps femoris (BF) between EOEs and the HS protocol. Time of contraction (Tc) in the RF was possibly to very likely lower in the HS in comparison to EOEs. Additionally, muscular displacement (Dm) in the RF was substantially lower in the HS compared to EOEs. VP produced higher concentrations of damage markers than YIT and concentric exercise did. Furthermore, tensiomyography variables showed similar activation in both exercises, although higher specific fatigue (in the RF) was registered in the traditional HS.
Identifiants
pubmed: 33312292
doi: 10.2478/hukin-2020-0034
pii: hukin-2020-0034
pmc: PMC7706669
doi:
Types de publication
Journal Article
Langues
eng
Pagination
15-27Informations de copyright
© 2020 César Berzosa, Fernando Sanz-López, Oliver Gonzalo-Skok, Carlos Valero-Campo, José Luis Arjol-Serrano, Eduardo Piedrafita, Guillermo Aladrén, A. Vanessa Bataller-Cervero, published by Sciendo.
Références
Eur J Appl Physiol. 2012 Sep;112(9):3205-13
pubmed: 22227852
J Sport Health Sci. 2018 Jul;7(3):265-274
pubmed: 30356648
Physiol Rev. 2008 Oct;88(4):1243-76
pubmed: 18923182
Eur J Appl Physiol. 2004 Jul;92(3):321-7
pubmed: 15098126
Free Radic Biol Med. 2001 Sep 15;31(6):745-53
pubmed: 11557312
Med Sci Sports Exerc. 2009 Jan;41(1):3-13
pubmed: 19092709
J Appl Physiol (1985). 2001 Oct;91(4):1669-78
pubmed: 11568149
J Electromyogr Kinesiol. 2012 Dec;22(6):866-72
pubmed: 22776612
J Hum Kinet. 2017 Aug 1;58:23-34
pubmed: 28828075
J Neuroeng Rehabil. 2013 Jul 03;10:67
pubmed: 23822158
J Sport Health Sci. 2018 Jul;7(3):255-264
pubmed: 30356622
J Electromyogr Kinesiol. 2008 Aug;18(4):645-51
pubmed: 17379538
J Electromyogr Kinesiol. 2012 Aug;22(4):612-9
pubmed: 22341590
Clin Chem Lab Med. 2010 Jun;48(6):757-67
pubmed: 20518645
Eur J Appl Physiol. 2008 Feb;102(3):271-81
pubmed: 17926060
Br Med Bull. 2007;81-82:209-30
pubmed: 17569697
Eur J Appl Physiol. 2014 May;114(5):1075-84
pubmed: 24519446
Clin Chem Lab Med. 2008;46(9):1313-8
pubmed: 18636795
Aviat Space Environ Med. 2011 Jan;82(1):13-9
pubmed: 21235100
PLoS One. 2016 Apr 25;11(4):e0154346
pubmed: 27111766
Med Sci Sports Exerc. 2000 Jul;32(7):1202-7
pubmed: 10912882
J Sports Sci. 2011 Mar;29(6):619-25
pubmed: 21391085
J Physiol. 2001 Dec 1;537(Pt 2):333-45
pubmed: 11731568
J Strength Cond Res. 2014 Jan;28(1):126-33
pubmed: 23669817
J Electromyogr Kinesiol. 2012 Jun;22(3):334-41
pubmed: 22336641
Appl Physiol Nutr Metab. 2009 Aug;34(4):745-53
pubmed: 19767811
Int J Sports Physiol Perform. 2014 Jul;9(4):667-73
pubmed: 24231555
Eur J Appl Physiol. 2011 Jun;111(6):1127-33
pubmed: 21116825
Biochem J. 1985 Jul 15;229(2):409-17
pubmed: 2994634
Eur J Sport Sci. 2015;15(8):720-6
pubmed: 26289478
Free Radic Biol Med. 1990;9(6):515-40
pubmed: 2079232
Eur J Appl Physiol. 2006 Feb;96(3):282-91
pubmed: 16283372
J Strength Cond Res. 2012 Dec;26(12):3243-61
pubmed: 22344055
J Strength Cond Res. 2017 Dec;31(12):3524-3536
pubmed: 28930871
Eur J Appl Physiol. 2010 Nov;110(5):997-1005
pubmed: 20676897
Med Sci Sports Exerc. 2011 Sep;43(9):1725-34
pubmed: 21311352