Coarse-grained conformational surface hopping: Methodology and transferability.


Journal

The Journal of chemical physics
ISSN: 1089-7690
Titre abrégé: J Chem Phys
Pays: United States
ID NLM: 0375360

Informations de publication

Date de publication:
07 Dec 2020
Historique:
entrez: 9 12 2020
pubmed: 10 12 2020
medline: 10 12 2020
Statut: ppublish

Résumé

Coarse-grained (CG) conformational surface hopping (SH) adapts the concept of multisurface dynamics, initially developed to describe electronic transitions in chemical reactions, to accurately describe classical molecular dynamics at a reduced level. The SH scheme couples distinct conformational basins (states), each described by its own force field (surface), resulting in a significant improvement of the approximation to the many-body potential of mean force [T. Bereau and J. F. Rudzinski, Phys. Rev. Lett. 121, 256002 (2018)]. The present study first describes CG SH in more detail, through both a toy model and a three-bead model of hexane. We further extend the methodology to non-bonded interactions and report its impact on liquid properties. Finally, we investigate the transferability of the surfaces to distinct systems and thermodynamic state points, through a simple tuning of the state probabilities. In particular, applications to variations in temperature and chemical composition show good agreement with reference atomistic calculations, introducing a promising "weak-transferability regime," where CG force fields can be shared across thermodynamic and chemical neighborhoods.

Identifiants

pubmed: 33291905
doi: 10.1063/5.0031249
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

214110

Auteurs

Joseph F Rudzinski (JF)

Max Planck Institute for Polymer Research, 55128 Mainz, Germany.

Tristan Bereau (T)

Max Planck Institute for Polymer Research, 55128 Mainz, Germany.

Classifications MeSH