Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts.
Arabidopsis
cell geometry
cortical tension
microtubule
protoplast
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
22 12 2020
22 12 2020
Historique:
pubmed:
9
12
2020
medline:
20
2
2021
entrez:
8
12
2020
Statut:
ppublish
Résumé
In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.e., along predicted maximal tension, which is transverse for cylindrical pressurized vessels. Here, we adapted a microwell setup to test these predictions in a single-cell system. We confined protoplasts laterally to impose a curvature ratio and modulated pressurization through osmotic changes. We find that CMTs can be longitudinal or transverse in wallless protoplasts and that the switch in CMT orientation depends on pressurization. In particular, longitudinal CMTs become transverse when cortical tension increases. This explains the dual behavior of CMTs in planta: CMTs become longitudinal when stress levels become low, while stable transverse CMT alignments in tissues result from their autonomous response to tensile stress fluctuations.
Identifiants
pubmed: 33288703
pii: 2008895117
doi: 10.1073/pnas.2008895117
pmc: PMC7768696
doi:
Substances chimiques
Poloxamer
106392-12-5
Green Fluorescent Proteins
147336-22-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
32731-32738Informations de copyright
Copyright © 2020 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Curr Biol. 2020 Apr 20;30(8):1491-1503.e2
pubmed: 32169210
BMC Biol. 2020 Apr 30;18(1):44
pubmed: 32354334
PLoS Comput Biol. 2018 Feb 20;14(2):e1006011
pubmed: 29462151
Nat Commun. 2016 Oct 03;7:12557
pubmed: 27694937
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17399-17408
pubmed: 32641513
Methods Mol Biol. 2018;1771:55-66
pubmed: 29633204
Curr Biol. 2020 Mar 9;30(5):941-947.e2
pubmed: 32037093
Science. 2013 Dec 6;342(6163):1245533
pubmed: 24200811
Nat Cell Biol. 2007 Jul;9(7):832-7
pubmed: 17572669
Annu Rev Cell Dev Biol. 2005;21:203-22
pubmed: 16212493
Nat Commun. 2011 Aug 16;2:430
pubmed: 21847104
Nat Commun. 2019 Feb 13;10(1):726
pubmed: 30760714
Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61
pubmed: 16261190
Biomech Model Mechanobiol. 2012 Mar;11(3-4):461-73
pubmed: 21744269
J Exp Bot. 2013 Dec;64(18):5753-67
pubmed: 24153420
Curr Biol. 2018 Oct 8;28(19):3031-3043.e2
pubmed: 30245102
Nat Cell Biol. 2016 Mar;18(3):311-8
pubmed: 26878396
Science. 2008 Dec 12;322(5908):1650-5
pubmed: 19074340
Biophys J. 2007 Feb 1;92(3):1046-57
pubmed: 17098802
Science. 2006 Jun 9;312(5779):1491-5
pubmed: 16627697
Nat Commun. 2019 May 29;10(1):2360
pubmed: 31142740
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8891-3
pubmed: 27439863
J Plant Growth Regul. 2000 Mar;19(1):31-44
pubmed: 11010990
Biophys J. 2016 Apr 26;110(8):1836-1844
pubmed: 27119643
Plant Physiol. 2011 Sep;157(1):175-87
pubmed: 21768649
Curr Biol. 2018 Jun 4;28(11):1794-1802.e2
pubmed: 29804811
Methods Mol Biol. 2016;1365:155-84
pubmed: 26498784
J R Soc Interface. 2018 Jan;15(138):
pubmed: 29343634