Robust Bayesian Regression with Synthetic Posterior Distributions.

Bayesian bootstrap Bayesian lasso Gibbs sampling divergence linear regression

Journal

Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874

Informations de publication

Date de publication:
15 Jun 2020
Historique:
received: 29 04 2020
revised: 04 06 2020
accepted: 10 06 2020
entrez: 8 12 2020
pubmed: 9 12 2020
medline: 9 12 2020
Statut: epublish

Résumé

Although linear regression models are fundamental tools in statistical science, the estimation results can be sensitive to outliers. While several robust methods have been proposed in frequentist frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian approach to robust inference on linear regression models using synthetic posterior distributions based on

Identifiants

pubmed: 33286432
pii: e22060661
doi: 10.3390/e22060661
pmc: PMC7517196
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 17K14233
Organisme : Japan Society for the Promotion of Science
ID : 18K12757

Références

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):6527-34
pubmed: 11969638
J R Stat Soc Series B Stat Methodol. 2016 Nov;78(5):1103-1130
pubmed: 27840585
Biometrics. 2018 Mar;74(1):145-154
pubmed: 28493315
J Am Stat Assoc. 2019;114(527):1113-1125
pubmed: 31942084

Auteurs

Shintaro Hashimoto (S)

Department of Mathematics, Hiroshima University, Hiroshima 739-8521, Japan.

Shonosuke Sugasawa (S)

Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, Japan.

Classifications MeSH