Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice.


Journal

Journal of Alzheimer's disease : JAD
ISSN: 1875-8908
Titre abrégé: J Alzheimers Dis
Pays: Netherlands
ID NLM: 9814863

Informations de publication

Date de publication:
2021
Historique:
pubmed: 9 12 2020
medline: 28 9 2021
entrez: 8 12 2020
Statut: ppublish

Résumé

Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer's disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown. To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms. CP2 was administered to male and female 3xTg-AD mice from 3.5-18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting. Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β). CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.

Sections du résumé

BACKGROUND
Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer's disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown.
OBJECTIVE
To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms.
METHODS
CP2 was administered to male and female 3xTg-AD mice from 3.5-18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting.
RESULTS
Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β).
CONCLUSION
CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.

Identifiants

pubmed: 33285637
pii: JAD201015
doi: 10.3233/JAD-201015
pmc: PMC7902954
doi:

Substances chimiques

CP2 compound 0
Pyrones 0
Radiopharmaceuticals 0
tau Proteins 0
Fluorodeoxyglucose F18 0Z5B2CJX4D
Electron Transport Complex I EC 7.1.1.2

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

335-353

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS107265
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG055549
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG062135
Pays : United States
Organisme : NINDS NIH HHS
ID : UH3 NS113776
Pays : United States

Références

FASEB J. 2015 Oct;29(10):4273-84
pubmed: 26108977
Genes Dev. 2005 Jul 1;19(13):1544-55
pubmed: 15998808
J Neurosci. 2014 Apr 23;34(17):6084-97
pubmed: 24760868
PLoS One. 2013 Jul 17;8(7):e69830
pubmed: 23875003
Alzheimers Res Ther. 2019 Jun 29;11(1):57
pubmed: 31253185
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6957-62
pubmed: 21482799
Drugs Exp Clin Res. 1999;25(2-3):87-97
pubmed: 10370869
J Neurosci. 2012 Apr 25;32(17):5821-32
pubmed: 22539844
Clin Transl Imaging. 2013 Aug;1(4):
pubmed: 24409422
Nat Med. 2020 Mar;26(3):314-316
pubmed: 32132715
Neuron. 2010 Dec 22;68(6):1067-81
pubmed: 21172610
Neurology. 2003 May 13;60(9):1495-500
pubmed: 12743238
Mol Neurodegener. 2009 Mar 11;4:13
pubmed: 19284597
J Biol Chem. 2012 Apr 27;287(18):14984-93
pubmed: 22403409
Cancer Res. 2009 May 1;69(9):4018-26
pubmed: 19366811
Neurobiol Aging. 2017 Oct;58:1-13
pubmed: 28688899
Aging Cell. 2018 Aug;17(4):e12791
pubmed: 29877034
J Neurochem. 2009 Feb;108(4):1097-1108
pubmed: 19141069
Br J Pharmacol. 2000 Jul;130(5):1115-23
pubmed: 10882397
Mov Disord. 2014 Apr;29(4):470-8
pubmed: 24532007
J Neurosci. 2005 Oct 19;25(42):9694-703
pubmed: 16237174
Lancet. 2016 Dec 10;388(10062):2873-2884
pubmed: 27863809
Cell Syst. 2016 Feb 24;2(2):122-32
pubmed: 27135165
Front Neuroanat. 2019 Dec 19;13:99
pubmed: 31920568
Nature. 1993 Jan 7;361(6407):31-9
pubmed: 8421494
Cogn Neurodyn. 2008 Mar;2(1):1-5
pubmed: 19003468
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6983-92
pubmed: 26604311
Biochem Biophys Rep. 2015 Sep 02;4:126-133
pubmed: 29124195
Nat Rev Drug Discov. 2010 Oct;9(10):749-51
pubmed: 20885394
Cell Calcium. 2013 Mar;53(3):217-23
pubmed: 23298795
Proc Natl Acad Sci U S A. 1985 Sep;82(17):6010-3
pubmed: 3862113
Nat Rev Drug Discov. 2015 Feb;14(2):130-46
pubmed: 25633797
J Neuropathol Exp Neurol. 2009 Jan;68(1):1-14
pubmed: 19104448
Food Funct. 2020 Feb 26;11(2):1211-1224
pubmed: 32068753
Neurobiol Aging. 2008 Sep;29(9):1296-307
pubmed: 17420070
Nat Rev Neurosci. 2007 Sep;8(9):663-72
pubmed: 17684513
Neuron. 2004 Sep 30;44(1):181-93
pubmed: 15450169
Nat Rev Drug Discov. 2020 Sep;19(9):609-633
pubmed: 32709961
Nat Genet. 2003 Jan;33(1):40-8
pubmed: 12447374
J Neurosci. 2001 Oct 15;21(20):7985-92
pubmed: 11588171
Nat Neurosci. 2011 Mar;14(3):285-93
pubmed: 21346746
J Biol Chem. 2001 Mar 16;276(11):7713-6
pubmed: 11244089
Aging Cell. 2014 Jun;13(3):401-7
pubmed: 24341918
Neural Plast. 2019 May 2;2019:4209475
pubmed: 31191636
Brain Struct Funct. 2016 Jan;221(1):591-603
pubmed: 25381005
J Clin Endocrinol Metab. 2020 Apr 1;105(4):
pubmed: 31778170
Ageing Res Rev. 2017 Nov;40:31-44
pubmed: 28802803
PLoS One. 2013 Nov 12;8(11):e78919
pubmed: 24265728
J Alzheimers Dis. 2018;65(4):1225-1236
pubmed: 30149446
Annu Rev Cell Dev Biol. 2007;23:613-43
pubmed: 17506699
Nat Rev Drug Discov. 2020 Apr;19(4):226
pubmed: 32161372
Alzheimers Res Ther. 2016 May 12;8(1):18
pubmed: 27176461
J Neurochem. 2019 Apr;149(1):54-72
pubmed: 30300917
Nat Rev Neurol. 2018 Jul;14(7):399-415
pubmed: 29895964
PLoS One. 2015 Dec 18;10(12):e0144290
pubmed: 26684010
EBioMedicine. 2015 Nov 03;2(12):1888-904
pubmed: 26844268
J Cell Mol Med. 2008 Jan-Feb;12(1):241-57
pubmed: 18208556
J Neurosci. 2013 Dec 4;33(49):19276-83
pubmed: 24305823
Science. 2002 Dec 20;298(5602):2398-401
pubmed: 12471266
Nat Rev Neurol. 2019 Feb;15(2):73-88
pubmed: 30610216
Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6166-71
pubmed: 15831587
Oxid Med Cell Longev. 2020 Apr 19;2020:2315106
pubmed: 32377293
Neurosci Lett. 2017 Jul 13;653:276-282
pubmed: 28554859
Int J Mol Sci. 2012;13(9):10771-806
pubmed: 23109822
Korean J Physiol Pharmacol. 2014 Apr;18(2):155-61
pubmed: 24757378
Nat Neurosci. 2001 Nov;4(11):1086-92
pubmed: 11687814
Ageing Res Rev. 2012 Apr;11(2):230-41
pubmed: 22186033
EMBO J. 2006 Jun 21;25(12):2867-77
pubmed: 16710293
Cell. 2003 Mar 7;112(5):631-43
pubmed: 12628184
Neurobiol Dis. 2007 Oct;28(1):76-82
pubmed: 17659878
J Neuropathol Exp Neurol. 2004 Apr;63(4):287-301
pubmed: 15099019
EBioMedicine. 2015 Apr 1;2(4):294-305
pubmed: 26086035
J Physiol. 2010 Jan 1;588(Pt 1):107-16
pubmed: 19933758
Front Mol Neurosci. 2014 Mar 11;7:16
pubmed: 24653673
J Alzheimers Dis. 2010;19(4):1221-9
pubmed: 20308788
Cell. 2010 Aug 6;142(3):387-97
pubmed: 20655099
Physiol Rev. 2004 Apr;84(2):361-84
pubmed: 15044677
Nat Commun. 2020 Mar 2;11(1):1148
pubmed: 32123170
Biomed Rep. 2016 Apr;4(4):403-407
pubmed: 27073621
J Biol Chem. 2001 Jan 5;276(1):693-9
pubmed: 11024032
J Alzheimers Dis. 2015;45(1):75-88
pubmed: 25537011
J Neurosci. 2012 Sep 19;32(38):13200-5
pubmed: 22993436
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20033-8
pubmed: 19892736
Neuron. 2007 Feb 1;53(3):337-51
pubmed: 17270732
J Biol Chem. 2008 Jan 25;283(4):1882-92
pubmed: 18042541
Sci Rep. 2017 Oct 23;7(1):13753
pubmed: 29062069
Neuron. 2003 Oct 30;40(3):457-60
pubmed: 14642270
Dev Cell. 2001 Nov;1(5):633-44
pubmed: 11709184
Eur J Neurosci. 2005 Oct;22(8):1942-50
pubmed: 16262633
Lancet. 2008 Jul 19;372(9634):216-23
pubmed: 18640458
J Neurosci. 2009 Jul 22;29(29):9219-26
pubmed: 19625512
Neuron. 2003 Jul 31;39(3):409-21
pubmed: 12895417
Neurology. 2004 Mar 23;62(6):925-31
pubmed: 15037694
PLoS One. 2011;6(6):e21521
pubmed: 21731772
Oxid Med Cell Longev. 2019 Sep 4;2019:9874159
pubmed: 31565158
J Biol Chem. 2006 Sep 1;281(35):25457-65
pubmed: 16803897

Auteurs

Andrea Stojakovic (A)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Su-Youne Chang (SY)

Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.
Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.

Jarred Nesbitt (J)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Nicholas P Pichurin (NP)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Mark A Ostroot (MA)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Tomonori Aikawa (T)

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.

Takahisa Kanekiyo (T)

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.

Eugenia Trushina (E)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH