The Macrophages and Intestinal Symbiosis.
Journal
Results and problems in cell differentiation
ISSN: 0080-1844
Titre abrégé: Results Probl Cell Differ
Pays: Germany
ID NLM: 0173555
Informations de publication
Date de publication:
2020
2020
Historique:
entrez:
2
12
2020
pubmed:
3
12
2020
medline:
28
1
2021
Statut:
ppublish
Résumé
The human intestinal tract is inhabited by trillions of microorganisms and houses the largest pool of macrophages in the human body. Being a part of the innate immune system, the macrophages, the professional phagocytes, vigorously respond to the microbial and dietary antigens present in the intestine. Because such a robust immune response poses the danger to the survival of the non-harmful and beneficial gut microbiota, the macrophages developed mechanisms of recognition and hyposensitivity toward the non-harmful/beneficial inhabitants of the gut. We will discuss the evolution and identity of some of these mechanisms in the following chapter.
Identifiants
pubmed: 33263889
doi: 10.1007/978-3-030-51849-3_23
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
605-616Références
Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102–117. https://doi.org/10.1111/imr.12192
doi: 10.1111/imr.12192
pubmed: 24942685
pmcid: 4141699
Bain CC, Schridde A (2018) Origin, differentiation, and function of intestinal macrophages. Front Immunol 9:2733. https://doi.org/10.3389/fimmu.2018.02733
doi: 10.3389/fimmu.2018.02733
pubmed: 30538701
pmcid: 6277706
Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937. https://doi.org/10.1038/ni.2967
doi: 10.1038/ni.2967
pubmed: 25151491
pmcid: 4169290
Blank F, Wehrli M, Lehmann A, Baum O, Gehr P, von Garnier C, Rothen-Rutishauser BM (2011) Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology 216:86–95. https://doi.org/10.1016/j.imbio.2010.02.006
doi: 10.1016/j.imbio.2010.02.006
pubmed: 20362352
Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995. https://doi.org/10.4049/jimmunol.164.10.4991
doi: 10.4049/jimmunol.164.10.4991
pubmed: 10799849
Broderick NA (2015) A common origin for immunity and digestion. Front Immunol 6(72). https://doi.org/10.3389/fimmu.2015.00072 . eCollection 2015
Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252. https://doi.org/10.1073/pnas.1322269111
doi: 10.1073/pnas.1322269111
pubmed: 24390544
pmcid: 3926023
Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317:678–681. https://doi.org/10.1126/science.1143991
doi: 10.1126/science.1143991
pubmed: 17673666
pmcid: 3291017
Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841–2852. https://doi.org/10.1084/jem.20061884
doi: 10.1084/jem.20061884
pubmed: 17145958
pmcid: 2118178
Colonna M, Facchetti F (2003) TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J Infect Dis 187(Suppl 2):S397–S401. https://doi.org/10.1086/374754
doi: 10.1086/374754
pubmed: 12792857
Conway PL, Maki J, Mitchell R, Kjelleberg S (1986) Starvation of marine flounder, squid and laboratory mice and its effect on the intestinal microbiota. FEMS Microbiol Ecol 2:187–195. https://doi.org/10.1111/j.1574-6968.1986.tb01728.x
doi: 10.1111/j.1574-6968.1986.tb01728.x
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N et al (2018) Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175:400–15.e13. https://doi.org/10.1016/j.cell.2018.07.048
doi: 10.1016/j.cell.2018.07.048
pubmed: 30173915
Doshi N, Mitragotri S (2010 Apr 6) Macrophages recognize size and shape of their targets. PLoS One 5(4):e10051. https://doi.org/10.1371/journal.pone.0010051
doi: 10.1371/journal.pone.0010051
pubmed: 20386614
pmcid: 2850372
Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17:557–566. https://doi.org/10.3748/wjg.v17.i5.557
doi: 10.3748/wjg.v17.i5.557
pubmed: 21350704
pmcid: 3040327
Fiocchi C (2003) The normal intestinal mucosa: a state of ‘controlled inflammation’. In: Targan SR, Shanahan F (eds) Inflammatory bowel disease: from bench to bedside, 2nd edn. Kluwer Academic, Dordrecht, pp 101–120. https://doi.org/10.1007/0-387-25808-6_5
doi: 10.1007/0-387-25808-6_5
Fiocchi C (2008) What is “physiological” intestinal inflammation and how does it differ from “pathological” inflammation? Inflamm Bowel Dis 14(Suppl. 2):S77–S78. https://doi.org/10.1002/ibd.20618
doi: 10.1002/ibd.20618
pubmed: 18816772
Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2:346–353. https://doi.org/10.1038/nri800 . PMID:12033740
Gaudet RG, Bradfield CJ, MacMicking JD (2016) Evolution of cell-autonomous effector mechanisms in macrophages versus non-immune cells. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0050-2016
Grainger JR, Konkel JE, Zangerle-Murray T, Shaw TN (2017) Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Arch 469:527–539. https://doi.org/10.1007/s00424-017-1958-2
doi: 10.1007/s00424-017-1958-2
pubmed: 28283748
pmcid: 5362667
Gross M, Salame TM, Jung S (2015) Guardians of the gut – murine intestinal macrophages and dendritic cells. Front Immunol 6:254. https://doi.org/10.3389/fimmu.2015.00254 . eCollection 2015
doi: 10.3389/fimmu.2015.00254
pubmed: 26082775
pmcid: 4451680
Hartenstein V, Martinez P (2019) Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages. Cell Tissue Res 377:527–547. https://doi.org/10.1007/s00441-019-03096-6
doi: 10.1007/s00441-019-03096-6
pubmed: 31485720
pmcid: 6750737
Helander HF, Fändriks L (2014) Surface area of the digestive tract – revisited. Scand J Gastroenterol 49:681–689. https://doi.org/10.3109/00365521.2014.898326
doi: 10.3109/00365521.2014.898326
pubmed: 24694282
Herwald H, Egesten A (2016) On PAMPs and DAMPs. J Innate Immun 8:427–428. https://doi.org/10.1159/000448437
doi: 10.1159/000448437
pubmed: 27522675
pmcid: 6738819
Hine AM, Loke P (2019) Intestinal macrophages in resolving inflammation. J Immunol 203:593–599. https://doi.org/10.4049/jimmunol.1900345
doi: 10.4049/jimmunol.1900345
pubmed: 31332080
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318
doi: 10.1126/science.284.5418.1313
Hounnou G, Destrieux C, Desmé J, Bertrand P, Velut S (2002) Anatomical study of the length of the human intestine. Surg Radiol Anat 24:290–294. https://doi.org/10.1007/s00276-002-0057-y . ISSN 0930-1038
doi: 10.1007/s00276-002-0057-y
pubmed: 12497219
Hume DA, Perry VH, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210:503–512
doi: 10.1002/ar.1092100311
Iyer SS, Cheng G (2012) Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 32:23–63. PMID: 22428854
Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715–727. https://doi.org/10.2353/ajpath.2007.070166
doi: 10.2353/ajpath.2007.070166
pubmed: 17640961
pmcid: 1959484
McGrath KE, Frame JM, Palis J (2015) Early hematopoiesis and macrophage development. Semin Immunol 27:379–387. https://doi.org/10.1016/j.smim.2016.03.013
doi: 10.1016/j.smim.2016.03.013
pubmed: 27021646
Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. https://doi.org/10.1038/nature07201
doi: 10.1038/nature07201
pubmed: 18650913
Mikkelsen HB, Rumessen JJ (1992) Characterization of macrophage-like cells in the external layers of human small and large intestine. Cell Tissue Res 270:273–279
doi: 10.1007/BF00328013
Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–313. https://doi.org/10.1016/j.cell.2014.04.050
doi: 10.1016/j.cell.2014.04.050
pubmed: 25036630
pmcid: 4149228
Nagashima R, Maeda K, Imai Y, Takahashi T (1996) Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. J Histochem Cytochem 44:721–731
doi: 10.1177/44.7.8675993
Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258. https://doi.org/10.1126/science.1102901
doi: 10.1126/science.1102901
pubmed: 15653504
Nyholm SV, Graf J (2012) Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 10:815–827. https://doi.org/10.1038/nrmicro2894
doi: 10.1038/nrmicro2894
pubmed: 23147708
Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367. https://doi.org/10.1038/86373
doi: 10.1038/86373
pubmed: 11276208
Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352. https://doi.org/10.1038/nri.2016.42
doi: 10.1038/nri.2016.42
pubmed: 27231050
pmcid: 5541232
Rosengaus RB, Schultheis KF, Yalonetskaya A, Bulmer MS, DuComb WS, Benson RW, Thottam JP, Godoy-Carter V (2014) Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front Microbiol 5:607. https://doi.org/10.3389/fmicb.2014.00607 . eCollection 2014
doi: 10.3389/fmicb.2014.00607
pubmed: 25484878
pmcid: 4240165
Sarma JV, Ward PA (2011) The complement system. Cell Tissue Res 343:227–235. https://doi.org/10.1007/s00441-010-1034-0 . Epub 2010 Sep 14
doi: 10.1007/s00441-010-1034-0
pubmed: 20838815
Schmidt F, Dahlke K, Batra A, Keye J, Wu H, Friedrich M, Glauben R, Ring C, Loh G, Schaubeck M, Hackl H, Trajanoski Z, Schumann M, Kühl AA, Blaut M, Siegmund B (2019) Microbial colonization in adulthood shapes the intestinal macrophage compartment. J Crohns Colitis 13:1173–1185. https://doi.org/10.1093/ecco-jcc/jjz036
doi: 10.1093/ecco-jcc/jjz036
pubmed: 30938416
Scott NA, Andrusaite A, Andersen P, Lawson M, Alcon-Giner C, Leclaire C, Caim S, Le Gall G et al (2018) Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med 10(464):pii:eaao4755. https://doi.org/10.1126/scitranslmed.aao4755
doi: 10.1126/scitranslmed.aao4755
Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11:247–251. https://doi.org/10.1016/j.anaerobe.2005.05.001
doi: 10.1016/j.anaerobe.2005.05.001
pubmed: 16701579
Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA, Zangerle-Murray T et al (2018) Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med 215:1507–1518. https://doi.org/10.1084/jem.20180019
doi: 10.1084/jem.20180019
pubmed: 29789388
pmcid: 5987925
Shivers RP, Kooistra T, Chu SW, Pagano DJ, Kim DH (2009) Tissue specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe 6:321–330. https://doi.org/10.1016/j.chom.2009.09.001
doi: 10.1016/j.chom.2009.09.001
pubmed: 19837372
pmcid: 2772662
Sieweke MH, Allen JE (2013) Beyond stem cells: self-renewal of differentiated macrophages. Science 342:1242974. https://doi.org/10.1126/science.1242974
doi: 10.1126/science.1242974
pubmed: 24264994
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM (2011) Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 4:31–42. https://doi.org/10.1038/mi.2010.66
doi: 10.1038/mi.2010.66
pubmed: 20962772
Smythies LE, Shen R, Bimczok D, Novak L, Clements RH, Eckhoff DE, Bouchard P, George MD, Hu WK, Dandekar S, Smith PD (2010) Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation. J Biol Chem 285:19593–19604. https://doi.org/10.1074/jbc.M109.069955
doi: 10.1074/jbc.M109.069955
pubmed: 20388715
pmcid: 2885238
Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2015) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75
doi: 10.1172/JCI200519229
Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550. https://doi.org/10.1016/j.immuni.2005.05.002
doi: 10.1016/j.immuni.2005.05.002
pubmed: 15894272
Sun Z, Wu W, Zhang G (2011) Structure and expression of β-1,3-glucan recognition proteins from the ghost moth, Thitarodes pui (Hepialidae), and their response to Beauveria bassiana infection. J Insect Physiol 57:1660–1669. https://doi.org/10.1016/j.jinsphys.2011.08.019
doi: 10.1016/j.jinsphys.2011.08.019
pubmed: 21910994
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022
doi: 10.1016/j.cell.2010.01.022
pubmed: 20303872
Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510
doi: 10.1042/BCJ20160510
pubmed: 28512250
Traylor-Knowles N, Vandepas LE, Browne WE (2019) Still enigmatic: innate immunity in the ctenophore Mnemiopsis leidyi. Integr Comp Biol 59(4):811–818. https://doi.org/10.1093/icb/icz116
doi: 10.1093/icb/icz116
pubmed: 31251332
van Niekerk G, Engelbrecht AM (2015) Commentary on: “a common origin for immunity and digestion”. Front Microbiol 6:531. https://doi.org/10.3389/fmicb.2015.00531 . eCollection 2015
doi: 10.3389/fmicb.2015.00531
pubmed: 26074909
pmcid: 4445048
Wang S, Ye Q, Zeng X, Qiao S (2019) Functions of macrophages in the maintenance of intestinal homeostasis. J Immunol Res 2019:1512969. https://doi.org/10.1155/2019/1512969
doi: 10.1155/2019/1512969
pubmed: 31011585
pmcid: 6442305
Wells JM, Loonen LM, Karczewski JM (2010) The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. Int J Med Microbiol 300:41–48. https://doi.org/10.1016/j.ijmm.2009.08.008
doi: 10.1016/j.ijmm.2009.08.008
pubmed: 19783476
Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034
doi: 10.1038/nature12034
pubmed: 23619691
pmcid: 3725458