A network-based comparative framework to study conservation and divergence of proteomes in plant phylogenies.
Chromatography, Liquid
/ methods
Computational Biology
/ methods
Evolution, Molecular
Gene Expression Regulation, Plant
Gene Ontology
Gene Regulatory Networks
Genomics
/ methods
Phylogeny
Plant Proteins
/ genetics
Plants
/ classification
Proteome
/ genetics
Proteomics
/ methods
Species Specificity
Tandem Mass Spectrometry
/ methods
Transcriptome
/ genetics
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
11 01 2021
11 01 2021
Historique:
accepted:
19
10
2020
revised:
19
09
2020
received:
31
12
2019
pubmed:
22
11
2020
medline:
2
2
2021
entrez:
21
11
2020
Statut:
ppublish
Résumé
Comparative functional genomics offers a powerful approach to study species evolution. To date, the majority of these studies have focused on the transcriptome in mammalian and yeast phylogenies. Here, we present a novel multi-species proteomic dataset and a computational pipeline to systematically compare the protein levels across multiple plant species. Globally we find that protein levels diverge according to phylogenetic distance but is more constrained than the mRNA level. Module-level comparative analysis of groups of proteins shows that proteins that are more highly expressed tend to be more conserved. To interpret the evolutionary patterns of conservation and divergence, we develop a novel network-based integrative analysis pipeline that combines publicly available transcriptomic datasets to define co-expression modules. Our analysis pipeline can be used to relate the changes in protein levels to different species-specific phenotypic traits. We present a case study with the rhizobia-legume symbiosis process that supports the role of autophagy in this symbiotic association.
Identifiants
pubmed: 33219668
pii: 5997432
doi: 10.1093/nar/gkaa1041
pmc: PMC7797074
doi:
Substances chimiques
Plant Proteins
0
Proteome
0
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
PLoS Genet. 2014 Jul 17;10(7):e1004487
pubmed: 25032823
Nature. 2020 Jun;582(7813):592-596
pubmed: 32555458
Anal Chem. 2013 Dec 17;85(24):11710-4
pubmed: 24251866
Syst Biol. 2013 Jan 1;62(1):110-20
pubmed: 22949484
Plant Cell Environ. 2012 Oct;35(10):1787-98
pubmed: 22489681
Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80
pubmed: 26578574
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Genome Biol. 2016 Jul 08;17(1):151
pubmed: 27391956
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Front Genet. 2019 Nov 07;10:963
pubmed: 31803221
Plant Physiol. 2011 Jul;156(3):1316-30
pubmed: 21571672
Yeast. 2007 Nov;24(11):961-76
pubmed: 17605132
Genome Biol. 2015 Aug 06;16:157
pubmed: 26243257
Nature. 2007 Oct 11;449(7163):677-81
pubmed: 17928853
Curr Opin Plant Biol. 2016 Oct;33:116-125
pubmed: 27423125
Cell. 2020 Apr 16;181(2):460-474.e14
pubmed: 32191846
PLoS Biol. 2006 Apr;4(4):e109
pubmed: 16555924
Nat Rev Genet. 2012 Jun 18;13(7):505-16
pubmed: 22705669
Cell Rep. 2014 Dec 11;9(5):1959-1965
pubmed: 25466257
Science. 2010 Feb 26;327(5969):1126-9
pubmed: 20185723
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
Trends Plant Sci. 2013 Jun;18(6):298-304
pubmed: 23462549
Bioinformatics. 2019 Aug 15;35(16):2880-2881
pubmed: 30590391
Nature. 2011 Oct 19;478(7369):343-8
pubmed: 22012392
Plant Cell. 2016 Sep;28(9):2326-2341
pubmed: 27577790
Nature. 2006 Oct 5;443(7111):594-7
pubmed: 17006448
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Nat Rev Genet. 2012 Mar 13;13(4):227-32
pubmed: 22411467
Nat Commun. 2018 Nov 23;9(1):4963
pubmed: 30470754
Curr Opin Genet Dev. 2009 Dec;19(6):571-8
pubmed: 19879128
Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21
pubmed: 21062823
Annu Rev Biochem. 2012;81:379-405
pubmed: 22439968
Front Genet. 2019 May 01;10:381
pubmed: 31118945
Genome Res. 2013 Jun;23(6):1039-50
pubmed: 23640720
Plant Physiol. 2016 Aug;171(4):2294-316
pubmed: 27288366
Plant Cell. 2015 Nov;27(11):3260-76
pubmed: 26498905
Genome Res. 2014 Aug;24(8):1356-62
pubmed: 24904045
Genome Biol. 2016 May 27;17(1):114
pubmed: 27233632
Cell. 2012 Jan 20;148(1-2):335-48
pubmed: 22244452
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Plant Cell. 2013 Jan;25(1):71-82
pubmed: 23341336
Science. 2013 Nov 29;342(6162):1100-4
pubmed: 24136357
Bioinformatics. 2006 Nov 1;22(21):2688-90
pubmed: 16928733
Front Plant Sci. 2015 Jan 30;6:22
pubmed: 25688253
Nucleic Acids Res. 2015 Jan;43(Database issue):D1057-63
pubmed: 25378336
BMC Bioinformatics. 2017 Feb 27;18(1):128
pubmed: 28241739
Nat Rev Genet. 2017 Sep;18(9):551-562
pubmed: 28607512
Elife. 2013 Jun 18;2:e00603
pubmed: 23795289
Cell. 2012 Jun 8;149(6):1381-92
pubmed: 22682255
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902
pubmed: 12689096
BMC Genomics. 2013 Jul 23;14:498
pubmed: 23879659
Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338
pubmed: 27899567
Mol Plant. 2017 Sep 12;10(9):1147-1158
pubmed: 28782719
Nature. 2006 Jun 15;441(7095):840-6
pubmed: 16699522
Chem Rev. 2013 Apr 10;113(4):2343-94
pubmed: 23438204
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Mol Cell Proteomics. 2014 Jan;13(1):339-47
pubmed: 24143002
Database (Oxford). 2011 Jul 23;2011:bar030
pubmed: 21785142