Glucose Binding Drives Reconfiguration of a Dynamic Library of Urea-Containing Metal-Organic Assemblies.
dynamic combinatorial library
glucose binding
host-guest systems
metal-organic assemblies
supramolecular chemistry
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
23 02 2021
23 02 2021
Historique:
received:
30
10
2020
pubmed:
21
11
2020
medline:
21
11
2020
entrez:
20
11
2020
Statut:
ppublish
Résumé
A bis-urea-functionalized ditopic subcomponent assembled with 2-formylpyridine and Fe
Identifiants
pubmed: 33217126
doi: 10.1002/anie.202014568
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4485-4490Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418-3438;
Angew. Chem. 2009, 121, 3470-3490;
S. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419-432;
C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012-3035;
Q. Zhang, K. Tiefenbacher, Nat. Chem. 2015, 7, 197-202;
S. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek, Chem. Soc. Rev. 2015, 44, 433-448.
T. Hasell, A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053;
K. Jie, Y. Zhou, E. Li, F. Huang, Acc. Chem. Res. 2018, 51, 2064-2072;
P. Howlader, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 9070-9078;
M. Yamashina, Y. Tanaka, R. Lavendomme, T. K. Ronson, M. Pittelkow, J. R. Nitschke, Nature 2019, 574, 511-515;
S. Akine, M. Miyashita, T. Nabeshima, J. Am. Chem. Soc. 2017, 139, 4631-4634;
O. Shyshov, R.-C. Brachvogel, T. Bachmann, R. Srikantharajah, D. Segets, F. Hampel, R. Puchta, M. von Delius, Angew. Chem. Int. Ed. 2017, 56, 776-781;
Angew. Chem. 2017, 129, 794-799.
M. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600-6620;
X. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794-7839.
G. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934-1947;
I. A. Riddell, M. M. J. Smulders, J. K. Clegg, J. R. Nitschke, Chem. Commun. 2011, 47, 457-459;
D. Yang, J. Zhao, Y. Zhao, Y. Lei, L. Cao, X.-J. Yang, M. Davi, N. de Sousa Amadeu, C. Janiak, Z. Zhang, Y.-Y. Wang, B. Wu, Angew. Chem. Int. Ed. 2015, 54, 8658-8661;
Angew. Chem. 2015, 127, 8782-8785;
D. Yang, J. Zhao, L. Yu, X. Lin, W. Zhang, H. Ma, A. Gogoll, Z. Zhang, Y. Wang, X.-J. Yang, B. Wu, J. Am. Chem. Soc. 2017, 139, 5946-5951.
D. M. Rudkevich in Functional Synthetic Receptors (Eds.: T. Schrader, A. D. Hamilton), Wiley-VCH, Weinheim, 2005, pp. 257-298.
R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918;
S. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825-841;
N. Kishi, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2014, 53, 3604-3607;
Angew. Chem. 2014, 126, 3678-3681;
D. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423-2436;
Q. Shi, X. Zhou, W. Yuan, X. Su, A. Neniškis, X. Wei, L. Taujenis, G. Snarskis, J. S. Ward, K. Rissanen, J. de Mendoza, E. Orentas, J. Am. Chem. Soc. 2020, 142, 3658-3670;
D. Zhang, T. K. Ronson, S. Güryel, J. D. Thoburn, D. J. Wales, J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 14534-14538;
X.-Z. Li, L.-P. Zhou, L.-L. Yan, D.-Q. Yuan, C.-S. Lin, Q.-F. Sun, J. Am. Chem. Soc. 2017, 139, 8237-8244;
M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019, 378, 333-349;
C. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. Eur. J. 2019, 25, 662-672;
W. Wang, Y.-X. Wang, H.-B. Yang, Chem. Soc. Rev. 2016, 45, 2656-2693;
G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233-2243.
J. W. Steed, Chem. Commun. 2011, 47, 1379-1383;
M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. W. Steed, Chem. Rev. 2010, 110, 1960-2004;
J. W. Steed, Chem. Soc. Rev. 2010, 39, 3686-3699.
B. Wu, F. Cui, Y. Lei, S. Li, N. de Sousa Amadeu, C. Janiak, Y.-J. Lin, L.-H. Weng, Y.-Y. Wang, X.-J. Yang, Angew. Chem. Int. Ed. 2013, 52, 5096-5100;
Angew. Chem. 2013, 125, 5200-5204;
S. Li, C. Jia, B. Wu, Q. Luo, X. Huang, Z. Yang, Q.-S. Li, X.-J. Yang, Angew. Chem. Int. Ed. 2011, 50, 5721-5724;
Angew. Chem. 2011, 123, 5839-5842;
J. Zhao, D. Yang, X.-J. Yang, B. Wu, Coord. Chem. Rev. 2019, 378, 415-444;
D. Yang, J. Zhao, X.-J. Yang, B. Wu, Org. Chem. Front. 2018, 5, 662-690.
G. Markiewicz, A. Jenczak, M. Kołodziejski, J. J. Holstein, J. K. M. Sanders, A. R. Stefankiewicz, Nat. Commun. 2017, 8, 15109.
Y. Liu, W. Zhao, C.-H. Chen, A. H. Flood, Science 2019, 365, 159-161.
R. A. Tromans, T. S. Carter, L. Chabanne, M. P. Crump, H. Li, J. V. Matlock, M. G. Orchard, A. P. Davis, Nat. Chem. 2019, 11, 52-56;
Y. Ferrand, M. P. Crump, A. P. Davis, Science 2007, 318, 619-622;
A. P. Davis, Chem. Soc. Rev. 2020, 49, 2531-2545.
Q.-Q. Wang, V. W. Day, K. Bowman-James, J. Am. Chem. Soc. 2013, 135, 392-399.
D. Zhang, T. K. Ronson, J. Mosquera, A. Martinez, L. Guy, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 6574-6577.
R. Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A. Watson, G. Van Berkel, W. B. Parson, B. P. Hay, J. Am. Chem. Soc. 2012, 134, 8525-8534.
S. Yi, V. Brega, B. Captain, A. E. Kaifer, Chem. Commun. 2012, 48, 10295-10297.
L.-P. Zhou, Q.-F. Sun, Chem. Commun. 2015, 51, 16767-16770.
K. Suzuki, M. Kawano, S. Sato, M. Fujita, J. Am. Chem. Soc. 2007, 129, 10652-10653.
Q.-Q. Wang, S. Gonell, S. H. A. M. Leenders, M. Düerr, I. Ivanović-Burmazović, J. N. H. Reek, Nat. Chem. 2016, 8, 225-230.
G. Men, J.-M. Lehn, Chem. Sci. 2019, 10, 90-98;
J.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151-160;
M. Kołodziejski, A. R. Stefankiewicz, J.-M. Lehn, Chem. Sci. 2019, 10, 1836-1843;
J. M. Lehn, A. V. Eliseev, Science 2001, 291, 2331-2332;
P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652-3711;
F. B. L. Cougnon, J. K. M. Sanders, Acc. Chem. Res. 2012, 45, 2211-2221;
J. Li, P. Nowak, S. Otto, J. Am. Chem. Soc. 2013, 135, 9222-9239;
M.-K. Chung, P. S. White, S. J. Lee, M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 8683-8686;
Angew. Chem. 2009, 121, 8839-8842;
S. M. Voshell, S. J. Lee, M. R. Gagné, J. Am. Chem. Soc. 2006, 128, 12422-12423;
B. C. Peacor, C. M. Ramsay, M. L. Waters, Chem. Sci. 2017, 8, 1422-1428;
J. F. Reuther, S. D. Dahlhauser, E. V. Anslyn, Angew. Chem. Int. Ed. 2019, 58, 74-85;
Angew. Chem. 2019, 131, 76-88;
J. F. Reuther, A. C. Goodrich, P. R. Escamilla, T. A. Lu, V. Del Rio, B. W. Davies, E. V. Anslyn, J. Am. Chem. Soc. 2018, 140, 3768-3774;
A. G. Mullins, N. K. Pinkin, J. A. Hardin, M. L. Waters, Angew. Chem. Int. Ed. 2019, 58, 5282-5285;
Angew. Chem. 2019, 131, 5336-5339;
L. I. James, J. E. Beaver, N. W. Rice, M. L. Waters, J. Am. Chem. Soc. 2013, 135, 6450-6455.
The metal centers of dinuclear M2L3 complexes may exhibit three combinations of stereochemical configurations (ΔΔ, ΛΛ,) and (ΔΛ) which result in two possible M2L3 isomers incorporating achiral ligand A: an achiral mesocate 2 (ΔΛ), and the enantiomers of chiral helicate 3 (ΔΔ or ΛΛ). See
C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005-2062;
U. Knof, A. von Zelewsky, Angew. Chem. Int. Ed. 1999, 38, 302-322;
Angew. Chem. 1999, 111, 312-333;
J. Xu, T. N. Parac, K. N. Raymond, Angew. Chem. Int. Ed. 1999, 38, 2878-2882;
Angew. Chem. 1999, 111, 3055-3058.
Deposition Number 2024202 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305-1323;
D. Brynn Hibbert, P. Thordarson, Chem. Commun. 2016, 52, 12792-12805.
S. E. Howson, L. E. N. Allan, N. P. Chmel, G. J. Clarkson, R. van Gorkum, P. Scott, Chem. Commun. 2009, 1727-1729;
J. L. Bolliger, A. M. Belenguer, J. R. Nitschke, Angew. Chem. Int. Ed. 2013, 52, 7958-7962;
Angew. Chem. 2013, 125, 8116-8120.
W. Zuo, Z. Huang, Y. Zhao, W. Xu, Z. Liu, X.-J. Yang, C. Jia, B. Wu, Chem. Commun. 2018, 54, 7378-7381.
S. A. Mulhern, P. H. Fishman, J. W. Kusiak, J. M. Bailey, J. Biol. Chem. 1973, 248, 4163-4173.