Formation of amyloid in encapsulated human pancreatic and human stem cell-generated beta cell implants.

animal models: murine clinical research/practice diabetes: new onset/posttransplant encapsulation endocrinology/diabetology islet transplantation islets of Langerhans pathology/histopathology stem cells translational research/science

Journal

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
ISSN: 1600-6143
Titre abrégé: Am J Transplant
Pays: United States
ID NLM: 100968638

Informations de publication

Date de publication:
06 2021
Historique:
revised: 16 10 2020
received: 29 06 2020
accepted: 02 11 2020
pubmed: 19 11 2020
medline: 29 6 2021
entrez: 18 11 2020
Statut: ppublish

Résumé

Detection of amyloid in intraportal islet implants of type 1 diabetes patients has been proposed as cause in their functional decline. The present study uses cultured adult human islets devoid of amyloid to examine conditions of its formation. After intraportal injection in patients, amyloid deposits <15 µm diameter were identified in 5%-12% of beta cell containing aggregates, 3-76 months posttransplant. Such deposits also formed in glucose-controlling islet implants in the kidney of diabetic mice but not in failing implants. Alginate-encapsulated islets formed amyloid during culture when functional, and in all intraperitoneal implants that corrected diabetes in mice, exhibiting larger sizes than in functioning nonencapsulated implants. After intraperitoneal injection in a patient, retrieved single capsules presented amyloid near living beta cells, whereas no amyloid occurred in clustered capsules with dead cells. Amyloid was also demonstrated in functional human stem cell-generated beta cell implants in subcutaneous devices of mice. Deposits up to 35 µm diameter were localized in beta cell-enriched regions and related to an elevated IAPP over insulin ratio in the newly generated beta cells. Amyloid in device-encapsulated human stem cell-generated beta cell implants marks the formation of a functional beta cell mass but also an imbalance between its activated state and its microenvironment.

Identifiants

pubmed: 33206461
doi: 10.1111/ajt.16398
pii: S1600-6135(22)08585-9
doi:

Substances chimiques

Amyloid 0
Islet Amyloid Polypeptide 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2090-2099

Informations de copyright

© 2020 The American Society of Transplantation and the American Society of Transplant Surgeons.

Références

Opie EL. The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of Langerhans. J Exp Med. 1901;25(5):527-540.
Höppener J, Ahrén B, Lips C. Islet amyloid and type 2 diabetes mellitus. N Engl J Med. 2000;343(6):411-419.
Warren S, Le Compte P, Legg M. Qualitative pancreatic changes in diabetes mellitus. In: The Pathology of Diabetes Mellitus. Philadelphia: Lea & Febiger; 1966:53-89.
Westermark GT, Krogvold L, Dahl-Jorgensen K, et al. Islet amyloid in recent-onset type 1 diabetes-the DiViD study. Ups J Med Sci. 2017;122(3):201-203.
Bell ET. Hyalinization of the islets of Langerhans in nondiabetic individuals. Am J Pathol. 1959;35(4):801-805.
Westermark P. Quantitative studies of amyloid in the islets of Langerhans. Ups J Med Sci. 1972;77(2):91-94.
Westermark P, Wernstedt C, Wilander E, et al. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140(3):827-831.
Montane J, Klimek-Abercrombie A, Potter KJ, et al. Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab. 2012;14(Suppl 3):68-77.
Potter KJ, Werner I, Denroche HC, et al. Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase. Am J Transplant. 2015;15(6):1519-1530.
Moriarty DF, Raleigh DP. Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry. 1999;38(6):1811-1818.
Epstein FH, Johnson KH, O'Brien TD, et al. Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med. 1989;321(8):513-518.
Hou X, Ling Z, Quartier E, et al. Prolonged exposure of pancreatic beta cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors. Diabetologia. 1999;42(2):188-194.
Huang C-J, Lin C-Y, Haataja L, et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress-mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes. 2007;56(8):2016-2027.
de Koning EJP, van den Brand JJG, Mott VL, et al. Macrophages and pancreatic islet amyloidosis. Amyloid. 1998;5(4):247-254.
Jurgens CA, Toukatly MN, Fligner CL, et al. β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol. 2011;178(6):2632-2640.
Guardado-Mendoza R, Davalli AM, Chavez AO, et al. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA. 2009;106(33):13992-13997.
Westermark P, Eizirik DL, Pipeleers DG, et al. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia. 1995;38(5):543-549.
Westermark GT, Westermark P, Nordin A, et al. Formation of amyloid in human pancreatic islets transplanted to the liver and spleen of nude mice. Ups J Med Sci. 2003;108(3):193-203.
Bohman S, Westermark GT. Extensive amyloid formation in transplanted microencapsulated mouse and human islets. Amyloid. 2012;19(2):87-93.
Westermark GT, Westermark P, Berne C, et al. Widespread amyloid deposition in transplanted human pancreatic islets. N Engl J Med. 2008;359(9):977-979.
Westermark GT, Davalli AM, Secchi A, et al. Further evidence for amyloid deposition in clinical pancreatic islet grafts. Transplantation. 2012;93(2):219-223.
Shapiro AMJ, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318-1330.
Carlsson P-O, Espes D, Sedigh A, et al. Transplantation of macro-encapsulated human islets within the bioartificial pancreas transplantation of macro-encapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18(7):1735-1744.
Nano R, Kerr-Conte JA, Scholz H, et al. Heterogeneity of human pancreatic islet isolation around Europe: results of a survey study. Transplantation. 2020;104(1):190-196.
Ling Z, Pipeleers DG. Prolonged exposure of human β cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest. 1996;98(12):2805-2812.
Keymeulen B, Ling Z, Gorus F, et al. Implantation of standardized beta-cell grafts in a liver segment of IDDM patients: graft and recipients characteristics in two cases of insulin-independence under maintenance immunosuppression for prior kidney graft. Diabetologia. 1998;41(4):452-459.
Keymeulen B, Gillard P, Mathieu C, et al. Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci USA. 2006;103(46):17444-17449.
Gillard P, Hilbrands R, Van De Velde U, et al. Minimal functional β-cell mass in intraportal implants that reduces glycemic variability in type 1 diabetic recipients. Diabetes Care. 2013;36(11):3483-3488.
Jacobs-Tulleneers-Thevissen D, Chintinne M, Ling Z, et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia. 2013;56(7):1605-1614.
Motté E, Szepessy E, Suenens K, et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014;307(9):E838-E846.
Robert T, De Mesmaeker I, Stangé GM, et al. Functional beta cell mass from device-encapsulated hESC-derived pancreatic endoderm achieving metabolic control. Stem Cell Reports. 2018;10(3):739-750.
Lathuilière A, Cosson S, Lutolf MP, et al. A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials. 2014;35(2):779-791.
Robert T, De Mesmaeker I, Van Hulle FO, et al. Cell mass increase associated with formation of glucose-controlling β -cell mass in device- encapsulated implants of hiPS-derived pancreatic endoderm. Stem Cells Transl Med. 2019;8(12):1296-1305.
Marzban L, Trigo-gonzalez G, Verchere CB. Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of β cells. Mol Endocrinol. 2005;19(8):2154-2163.
Courtade JA, Klimek-Abercrombie AM, Chen Y-C, et al. Measurement of pro-islet amyloid polypeptide (1-48) in diabetes and islet transplants. J Clin Endocrinol Metab. 2017;102(7):2595-2603.
Pipeleers D, Chintinne M, Denys B, et al. Restoring a functional β-cell mass in diabetes. Diabetes Obes Metab. 2008;10(Suppl. 4):54-62.
Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid and diabetes mellitus. Physiol Rev. 2011;91(3):795-826.
Mukherjee A, Morales-Scheihing D, Salvadores N, et al. Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. J Exp Med. 2017;2014(9):2591-2610.
Potter KJ, Abedini A, Marek P, et al. Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci USA. 2010;107(9):4305-4310.
Verchere CB, D'Alessio DA, Palmiter RD, et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA. 1996;93:3492-3496.
Paulsson JF, Westermark GT. Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes. 2005;54:2117-2125.
Gupta D, Leahy JL. Islet amyloid and type 2 diabetes: overproduction or inadequate clearance and detoxification ? J Clin Invest. 2014;124(8):3292-3294.
Gasa R, Gomis R, Casamitjana R, Novials A. High glucose concentration favors the selective secretion of islet amyloid polypeptide through a constitutive secretory pathway in human pancreatic islets. Pancreas. 2001;22(3):307-310.
Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 2004;89(8):3629-3643.

Auteurs

Freya Van Hulle (F)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Internal Medicine, University Hospital Brussels - UZB, Brussels, Belgium.

Kaat De Groot (K)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Internal Medicine, University Hospital Brussels - UZB, Brussels, Belgium.

Geert Stangé (G)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.

Krista Suenens (K)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.

Ines De Mesmaeker (I)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.

Diedert L De Paep (DL)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Department Surgery, University Hospital Brussels - UZB, Brussels, Belgium.
Beta Cell Bank, University Hospital Brussels - UZB, Brussels, Belgium.

Zhidong Ling (Z)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Beta Cell Bank, University Hospital Brussels - UZB, Brussels, Belgium.
Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.

Robert Hilbrands (R)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Diabetes Clinic, University Hospital Brussels - UZB, Brussels, Belgium.

Pieter Gillard (P)

Department Endocrinology, University Hospital Leuven - KUL, Leuven, Belgium.

Bart Keymeulen (B)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.
Diabetes Clinic, University Hospital Brussels - UZB, Brussels, Belgium.

Evert Kroon (E)

Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.
ViaCyte, Inc, San Diego, California, USA.

Gunilla T Westermark (GT)

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.

Daniel Jacobs-Tulleneers-Thevissen (D)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Department Surgery, University Hospital Brussels - UZB, Brussels, Belgium.
Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.

Daniel Pipeleers (D)

Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.
Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH