Neural tube defects: role of lithium carbonate exposure in embryonic neural development in a murine model.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
07 2021
Historique:
received: 26 08 2019
accepted: 18 10 2020
revised: 30 09 2020
pubmed: 12 11 2020
medline: 9 2 2022
entrez: 11 11 2020
Statut: ppublish

Résumé

Lithium carbonate (Li C57BL/6 mice were injected with different doses of Li The NTDs incidence was 33.7% following Li Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs. Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.

Sections du résumé

BACKGROUND
Lithium carbonate (Li
METHODS
C57BL/6 mice were injected with different doses of Li
RESULTS
The NTDs incidence was 33.7% following Li
CONCLUSIONS
Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs.
IMPACT
Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.

Identifiants

pubmed: 33173184
doi: 10.1038/s41390-020-01244-1
pii: 10.1038/s41390-020-01244-1
doi:

Substances chimiques

Lithium Carbonate 2BMD2GNA4V
Inositol 4L6452S749
Glycogen Synthase Kinase 3 beta EC 2.7.11.1
Gsk3b protein, mouse EC 2.7.11.1
5'-Nucleotidase EC 3.1.3.5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

82-92

Informations de copyright

© 2020. International Pediatric Research Foundation, Inc.

Références

Cunniff, C. H., Sahn, D. J. & Reed, K. L. Pregnancy outcome in patients treated with lithium. Teratol. Soc. Abstr. 39, 447–448 (1989).
Gentile, S. Lithium in pregnancy: the need to treat, the duty to ensure safety. Expert Opin. Drug Saf. 11, 425–437 (2012).
pubmed: 22400907 doi: 10.1517/14740338.2012.670419 pmcid: 22400907
Scrandis, D. A. Bipolar disorder in pregnancy: a review of pregnancy outcomes. J. Midwifery Women’s Health 62, 673–683 (2017).
doi: 10.1111/jmwh.12645
Price, L. H. & Heninger, G. R. Lithium in the treatment of mood disorders. N. Engl. J. Med. 331, 591–598 (1994).
pubmed: 8047085 doi: 10.1056/NEJM199409013310907 pmcid: 8047085
Grover, S. & Gupta, N. Lithium-associated anencephaly. Can. J. Psychiatry 50, 185–186 (2005).
pubmed: 15830831 doi: 10.1177/070674370505000317 pmcid: 15830831
Aoki, F. Y. & Ruedy, J. Severe lithium intoxication: management without dialysis and report of a possible teratogenic effect of lithium. Can. Med. Assoc. J. 105, 847–848 (1971).
pubmed: 5162410 pmcid: 1931219
Jurand, A. Teratogenic activity of lithium carbonate: an experimental update. Teratology 38, 101–111 (1988).
pubmed: 3140406 doi: 10.1002/tera.1420380202 pmcid: 3140406
Smithberg, M. & Dixit, P. K. Teratogenic effects of lithium in mice. Teratology 26, 239–246 (1982).
pubmed: 7163972 doi: 10.1002/tera.1420260304 pmcid: 7163972
Loevy, H. T. & Catchpole, H. R. Lithium ion in cleft palate teratogenesis in CD1 mice. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 144, 644–646 (1973).
doi: 10.3181/00379727-144-37653
Kessing, L. V., Hellmund, G., Geddes, J. R., Goodwin, G. M. & Andersen, P. K. Valproate v. lithium in the treatment of bipolar disorder in clinical practice: observational nationwide register-based cohort study. Br. J. Psychiatry 199, 57–63 (2011).
pubmed: 21593515 doi: 10.1192/bjp.bp.110.084822 pmcid: 21593515
Giles, J. J. & Bannigan, J. G. The effects of lithium on neurulation stage mouse embryos. Arch. Toxicol. 71, 519 (1997).
pubmed: 9248631 doi: 10.1007/s002040050422 pmcid: 9248631
Greene, N. D. & Copp, A. J. Neural tube defects. Annu. Rev. Neurosci. 37, 221–242 (2014).
pubmed: 25032496 pmcid: 4486472 doi: 10.1146/annurev-neuro-062012-170354
Hallcher, L. M. & Sherman, W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896–10901 (1980).
pubmed: 6253491 doi: 10.1016/S0021-9258(19)70391-3 pmcid: 6253491
Nokhbatolfoghahai, M. & Parivar, K. Teratogenic effect of lithium carbonate in early development of BALB/c mouse. Anat. Rec. 291, 1088–1096 (2008).
doi: 10.1002/ar.20730
Copp, A. J., Brook, F. A. & Roberts, H. J. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).
pubmed: 3254817 doi: 10.1242/dev.104.2.285 pmcid: 3254817
Massa, V. et al. Apoptosis is not required for mammalian neural tube closure. Proc. Natl. Acad. Sci. USA 106, 8233–8238 (2009).
pubmed: 19420217 pmcid: 2688898 doi: 10.1073/pnas.0900333106
Yamaguchi, Y. & Miura, M. Programmed cell death and caspase functions during neural development. Curr. Top. Dev. Biol. 114, 159–184 (2015).
pubmed: 26431567 doi: 10.1016/bs.ctdb.2015.07.016 pmcid: 26431567
Guo, J. et al. Quantification of plasma myo-inositol using gas chromatography-mass spectrometry. Clin. Chim. Acta 460, 88–92 (2016).
pubmed: 27342997 doi: 10.1016/j.cca.2016.06.022 pmcid: 27342997
Phiel, C. J. & Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813 (2003).
doi: 10.1146/annurev.pharmtox.41.1.789
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).
pubmed: 8710892 pmcid: 38692 doi: 10.1073/pnas.93.16.8455
Berridge, M. J., Downes, C. P. & Hanley, M. R. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419 (1989).
pubmed: 2553271 doi: 10.1016/0092-8674(89)90026-3 pmcid: 2553271
Woodgett, J. R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431–2438 (1990).
pubmed: 2164470 pmcid: 552268 doi: 10.1002/j.1460-2075.1990.tb07419.x
Azab, A. N., He, Q., Ju, S., Li, G. & Greenberg, M. L. Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol. Microbiol. 63, 1248–1258 (2007).
pubmed: 17257308 doi: 10.1111/j.1365-2958.2007.05591.x pmcid: 17257308
Wang, X. et al. Inhibition of thymidylate synthase affects neural tube development in mice. Reprod. Toxicol. 76, 17–25 (2018).
pubmed: 29258758 doi: 10.1016/j.reprotox.2017.12.007 pmcid: 29258758
Levi, I. et al. Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects. Eur. Neuropsychopharmacol. 23, 1806–1815 (2013).
pubmed: 23619164 doi: 10.1016/j.euroneuro.2013.02.004 pmcid: 23619164
Jacobson, S. J. et al. Prospective multicentre study of pregnancy outcome after lithium exposure during first trimester. Lancet 339, 530–533 (1992).
pubmed: 1346886 doi: 10.1016/0140-6736(92)90346-5 pmcid: 1346886
Schou, M., Goldfield, M. D., Weinstein, M. R. & Villeneuve, A. Lithium and pregnancy. I. Report from the Register of Lithium Babies. Br. Med. J. 2, 135–136 (1973).
pubmed: 4266975 pmcid: 1589265 doi: 10.1136/bmj.2.5859.135
Hansen, D. K., Walker, R. C. & Grafton, T. F. Effect of lithium carbonate on mouse and rat embryos in vitro. Teratology 41, 155–160 (1990).
pubmed: 2108509 doi: 10.1002/tera.1420410205 pmcid: 2108509
Czeizel, A. E. Specified critical period of different congenital abnormalities: a new approach for human teratological studies. Congenit. Anom. 48, 103–109 (2008).
doi: 10.1111/j.1741-4520.2008.00189.x
Valentina, M. et al. Apoptosis is not required for mammalian neural tube closure. Proc. Natl Acad. Sci. USA 106, 8233–8238 (2009).
doi: 10.1073/pnas.0900333106
Kim, T. H., Goodman, J., Anderson, K. V. & Niswander, L. Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev. Cell 13, 87–102 (2007).
pubmed: 17609112 doi: 10.1016/j.devcel.2007.04.018 pmcid: 17609112
Du, Y. et al. Chloroquine attenuates lithium-induced NDI and proliferation of renal collecting duct cells. Am. J. Physiol. Ren. Physiol. 318, F1199–F1209 (2020).
doi: 10.1152/ajprenal.00478.2019
Gu, X. K., Li, X. R., Lu, M. L. & Xu, H. Lithium promotes proliferation and suppresses migration of Schwann cells. Neural Regen. Res. 15, 1955–1961 (2020).
pubmed: 32246645 pmcid: 7513976 doi: 10.4103/1673-5374.264466
Zhang, J., He, L., Yang, Z., Li, L. & Cai, W. Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the Wnt signaling pathway. Anim. Cells Syst. 23, 32–41 (2019).
doi: 10.1080/19768354.2018.1487334
Geelen, J. A. & Langman, J. Ultrastructural observations on closure of the neural tube in the mouse. Anat. Embryol. 156, 73–88 (1979).
doi: 10.1007/BF00315716
Harris, M. J. & Juriloff, D. M. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res. A Clin. Mol. Teratol. 88, 653–669 (2010).
pubmed: 20740593 doi: 10.1002/bdra.20676 pmcid: 20740593
Pietruczuk, K., Lisowska, K. A., Grabowski, K., Landowski, J. & Witkowski, J. M. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci. Rep. 8, 3327 (2018).
pubmed: 29463875 pmcid: 5820246 doi: 10.1038/s41598-018-21769-0
Wang, F. et al. Depressant effect of lithium on apoptosis of nerve cells of adult rats after spinal cord injury. Zhongguo Gu Shang. 31, 379–385 (2018).
pubmed: 29772867 pmcid: 29772867
Parthasarathy, L. K., Seelan, R. S., Wilson, M. A., Vadnal, R. E. & Parthasarathy, R. N. Regional changes in rat brain inositol monophosphatase 1 (IMPase 1) activity with chronic lithium treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 55–60 (2003).
pubmed: 12551726 doi: 10.1016/S0278-5846(02)00315-9 pmcid: 12551726
Giles, J. J. & Bannigan, J. G. The effects of lithium on vascular development in the chick area vasculosa. J. Anat. 194(Pt 2), 197–205 (1999).
pubmed: 10337951 pmcid: 1467913 doi: 10.1046/j.1469-7580.1999.19420197.x
Klug, S., Collins, M., Nagao, T., Merker, H. J. & Neubert, D. Effect of lithium on rat embryos in culture: growth, development, compartmental distribution and lack of a protective effect of inositol. Arch. Toxicol. 66, 719–728 (1992).
pubmed: 1337824 doi: 10.1007/BF01972623 pmcid: 1337824
Hedgepeth, C. M. et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997).
pubmed: 9169052 doi: 10.1006/dbio.1997.8552 pmcid: 9169052
Copp, A. J., Stanier, P. & Greene, N. D. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 12, 799–810 (2013).
pubmed: 23790957 pmcid: 4023229 doi: 10.1016/S1474-4422(13)70110-8
Cavalli, P., Tonni, G., Grosso, E. & Poggiani, C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 91, 962–965 (2011).
pubmed: 21956977 doi: 10.1002/bdra.22853 pmcid: 21956977
Wentzel, P., Wentzel, C. R., Gareskog, M. B. & Eriksson, U. J. Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology 63, 193–201 (2001).
pubmed: 11320530 doi: 10.1002/tera.1034 pmcid: 11320530
Kappen, C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. Am. J. Med. Genet. C Semin. Med. Genet. 163C, 333–356 (2013).
pubmed: 24124024 doi: 10.1002/ajmg.c.31380 pmcid: 24124024
Einat, H. & Belmaker, R. H. The effects of inositol treatment in animal models of psychiatric disorders. J. Affect Disord. 62, 113–121 (2001).
pubmed: 11172878 doi: 10.1016/S0165-0327(00)00355-4 pmcid: 11172878
Armentero, M. T. et al. Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol. Aging 32, 2142–2151 (2011).
pubmed: 20106550 doi: 10.1016/j.neurobiolaging.2010.01.004 pmcid: 20106550

Auteurs

Shen Li (S)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
Graduate School of Peking Union Medical College, 100005, Beijing, China.

Danqing Luo (D)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Huixuan Yue (H)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
Graduate School of Peking Union Medical College, 100005, Beijing, China.

Jianjun Lyu (J)

National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, 100176, Beijing, China.

Yanwei Yang (Y)

National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, 100176, Beijing, China.

Tingting Gao (T)

Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, 100124, Beijing, China.

Yu Liu (Y)

Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, 100124, Beijing, China.

Jiaxing Qin (J)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Xiuwei Wang (X)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Zhen Guan (Z)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Fang Wang (F)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Feng Zhang (F)

Food Safety Inspection and Quarantine Institution Research Institute of China, 100025, Beijing, China.

Bo Niu (B)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Ting Zhang (T)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.

Rugang Zhong (R)

Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, 100124, Beijing, China.

Jin Guo (J)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China. guoguo0520@sina.com.

Jianhua Wang (J)

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China. fywjh@163.com.
Graduate School of Peking Union Medical College, 100005, Beijing, China. fywjh@163.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH