Neural tube defects: role of lithium carbonate exposure in embryonic neural development in a murine model.
5'-Nucleotidase
/ metabolism
Animals
Central Nervous System
/ drug effects
Disease Models, Animal
Female
Glycogen Synthase Kinase 3 beta
/ metabolism
Inositol
/ metabolism
Lithium Carbonate
/ adverse effects
Maternal Exposure
Mice
Mice, Inbred C57BL
Neural Tube Defects
/ chemically induced
Pregnancy
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
26
08
2019
accepted:
18
10
2020
revised:
30
09
2020
pubmed:
12
11
2020
medline:
9
2
2022
entrez:
11
11
2020
Statut:
ppublish
Résumé
Lithium carbonate (Li C57BL/6 mice were injected with different doses of Li The NTDs incidence was 33.7% following Li Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs. Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.
Sections du résumé
BACKGROUND
Lithium carbonate (Li
METHODS
C57BL/6 mice were injected with different doses of Li
RESULTS
The NTDs incidence was 33.7% following Li
CONCLUSIONS
Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs.
IMPACT
Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.
Identifiants
pubmed: 33173184
doi: 10.1038/s41390-020-01244-1
pii: 10.1038/s41390-020-01244-1
doi:
Substances chimiques
Lithium Carbonate
2BMD2GNA4V
Inositol
4L6452S749
Glycogen Synthase Kinase 3 beta
EC 2.7.11.1
Gsk3b protein, mouse
EC 2.7.11.1
5'-Nucleotidase
EC 3.1.3.5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
82-92Informations de copyright
© 2020. International Pediatric Research Foundation, Inc.
Références
Cunniff, C. H., Sahn, D. J. & Reed, K. L. Pregnancy outcome in patients treated with lithium. Teratol. Soc. Abstr. 39, 447–448 (1989).
Gentile, S. Lithium in pregnancy: the need to treat, the duty to ensure safety. Expert Opin. Drug Saf. 11, 425–437 (2012).
pubmed: 22400907
doi: 10.1517/14740338.2012.670419
pmcid: 22400907
Scrandis, D. A. Bipolar disorder in pregnancy: a review of pregnancy outcomes. J. Midwifery Women’s Health 62, 673–683 (2017).
doi: 10.1111/jmwh.12645
Price, L. H. & Heninger, G. R. Lithium in the treatment of mood disorders. N. Engl. J. Med. 331, 591–598 (1994).
pubmed: 8047085
doi: 10.1056/NEJM199409013310907
pmcid: 8047085
Grover, S. & Gupta, N. Lithium-associated anencephaly. Can. J. Psychiatry 50, 185–186 (2005).
pubmed: 15830831
doi: 10.1177/070674370505000317
pmcid: 15830831
Aoki, F. Y. & Ruedy, J. Severe lithium intoxication: management without dialysis and report of a possible teratogenic effect of lithium. Can. Med. Assoc. J. 105, 847–848 (1971).
pubmed: 5162410
pmcid: 1931219
Jurand, A. Teratogenic activity of lithium carbonate: an experimental update. Teratology 38, 101–111 (1988).
pubmed: 3140406
doi: 10.1002/tera.1420380202
pmcid: 3140406
Smithberg, M. & Dixit, P. K. Teratogenic effects of lithium in mice. Teratology 26, 239–246 (1982).
pubmed: 7163972
doi: 10.1002/tera.1420260304
pmcid: 7163972
Loevy, H. T. & Catchpole, H. R. Lithium ion in cleft palate teratogenesis in CD1 mice. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 144, 644–646 (1973).
doi: 10.3181/00379727-144-37653
Kessing, L. V., Hellmund, G., Geddes, J. R., Goodwin, G. M. & Andersen, P. K. Valproate v. lithium in the treatment of bipolar disorder in clinical practice: observational nationwide register-based cohort study. Br. J. Psychiatry 199, 57–63 (2011).
pubmed: 21593515
doi: 10.1192/bjp.bp.110.084822
pmcid: 21593515
Giles, J. J. & Bannigan, J. G. The effects of lithium on neurulation stage mouse embryos. Arch. Toxicol. 71, 519 (1997).
pubmed: 9248631
doi: 10.1007/s002040050422
pmcid: 9248631
Greene, N. D. & Copp, A. J. Neural tube defects. Annu. Rev. Neurosci. 37, 221–242 (2014).
pubmed: 25032496
pmcid: 4486472
doi: 10.1146/annurev-neuro-062012-170354
Hallcher, L. M. & Sherman, W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896–10901 (1980).
pubmed: 6253491
doi: 10.1016/S0021-9258(19)70391-3
pmcid: 6253491
Nokhbatolfoghahai, M. & Parivar, K. Teratogenic effect of lithium carbonate in early development of BALB/c mouse. Anat. Rec. 291, 1088–1096 (2008).
doi: 10.1002/ar.20730
Copp, A. J., Brook, F. A. & Roberts, H. J. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).
pubmed: 3254817
doi: 10.1242/dev.104.2.285
pmcid: 3254817
Massa, V. et al. Apoptosis is not required for mammalian neural tube closure. Proc. Natl. Acad. Sci. USA 106, 8233–8238 (2009).
pubmed: 19420217
pmcid: 2688898
doi: 10.1073/pnas.0900333106
Yamaguchi, Y. & Miura, M. Programmed cell death and caspase functions during neural development. Curr. Top. Dev. Biol. 114, 159–184 (2015).
pubmed: 26431567
doi: 10.1016/bs.ctdb.2015.07.016
pmcid: 26431567
Guo, J. et al. Quantification of plasma myo-inositol using gas chromatography-mass spectrometry. Clin. Chim. Acta 460, 88–92 (2016).
pubmed: 27342997
doi: 10.1016/j.cca.2016.06.022
pmcid: 27342997
Phiel, C. J. & Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813 (2003).
doi: 10.1146/annurev.pharmtox.41.1.789
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).
pubmed: 8710892
pmcid: 38692
doi: 10.1073/pnas.93.16.8455
Berridge, M. J., Downes, C. P. & Hanley, M. R. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419 (1989).
pubmed: 2553271
doi: 10.1016/0092-8674(89)90026-3
pmcid: 2553271
Woodgett, J. R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431–2438 (1990).
pubmed: 2164470
pmcid: 552268
doi: 10.1002/j.1460-2075.1990.tb07419.x
Azab, A. N., He, Q., Ju, S., Li, G. & Greenberg, M. L. Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol. Microbiol. 63, 1248–1258 (2007).
pubmed: 17257308
doi: 10.1111/j.1365-2958.2007.05591.x
pmcid: 17257308
Wang, X. et al. Inhibition of thymidylate synthase affects neural tube development in mice. Reprod. Toxicol. 76, 17–25 (2018).
pubmed: 29258758
doi: 10.1016/j.reprotox.2017.12.007
pmcid: 29258758
Levi, I. et al. Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects. Eur. Neuropsychopharmacol. 23, 1806–1815 (2013).
pubmed: 23619164
doi: 10.1016/j.euroneuro.2013.02.004
pmcid: 23619164
Jacobson, S. J. et al. Prospective multicentre study of pregnancy outcome after lithium exposure during first trimester. Lancet 339, 530–533 (1992).
pubmed: 1346886
doi: 10.1016/0140-6736(92)90346-5
pmcid: 1346886
Schou, M., Goldfield, M. D., Weinstein, M. R. & Villeneuve, A. Lithium and pregnancy. I. Report from the Register of Lithium Babies. Br. Med. J. 2, 135–136 (1973).
pubmed: 4266975
pmcid: 1589265
doi: 10.1136/bmj.2.5859.135
Hansen, D. K., Walker, R. C. & Grafton, T. F. Effect of lithium carbonate on mouse and rat embryos in vitro. Teratology 41, 155–160 (1990).
pubmed: 2108509
doi: 10.1002/tera.1420410205
pmcid: 2108509
Czeizel, A. E. Specified critical period of different congenital abnormalities: a new approach for human teratological studies. Congenit. Anom. 48, 103–109 (2008).
doi: 10.1111/j.1741-4520.2008.00189.x
Valentina, M. et al. Apoptosis is not required for mammalian neural tube closure. Proc. Natl Acad. Sci. USA 106, 8233–8238 (2009).
doi: 10.1073/pnas.0900333106
Kim, T. H., Goodman, J., Anderson, K. V. & Niswander, L. Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev. Cell 13, 87–102 (2007).
pubmed: 17609112
doi: 10.1016/j.devcel.2007.04.018
pmcid: 17609112
Du, Y. et al. Chloroquine attenuates lithium-induced NDI and proliferation of renal collecting duct cells. Am. J. Physiol. Ren. Physiol. 318, F1199–F1209 (2020).
doi: 10.1152/ajprenal.00478.2019
Gu, X. K., Li, X. R., Lu, M. L. & Xu, H. Lithium promotes proliferation and suppresses migration of Schwann cells. Neural Regen. Res. 15, 1955–1961 (2020).
pubmed: 32246645
pmcid: 7513976
doi: 10.4103/1673-5374.264466
Zhang, J., He, L., Yang, Z., Li, L. & Cai, W. Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the Wnt signaling pathway. Anim. Cells Syst. 23, 32–41 (2019).
doi: 10.1080/19768354.2018.1487334
Geelen, J. A. & Langman, J. Ultrastructural observations on closure of the neural tube in the mouse. Anat. Embryol. 156, 73–88 (1979).
doi: 10.1007/BF00315716
Harris, M. J. & Juriloff, D. M. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res. A Clin. Mol. Teratol. 88, 653–669 (2010).
pubmed: 20740593
doi: 10.1002/bdra.20676
pmcid: 20740593
Pietruczuk, K., Lisowska, K. A., Grabowski, K., Landowski, J. & Witkowski, J. M. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci. Rep. 8, 3327 (2018).
pubmed: 29463875
pmcid: 5820246
doi: 10.1038/s41598-018-21769-0
Wang, F. et al. Depressant effect of lithium on apoptosis of nerve cells of adult rats after spinal cord injury. Zhongguo Gu Shang. 31, 379–385 (2018).
pubmed: 29772867
pmcid: 29772867
Parthasarathy, L. K., Seelan, R. S., Wilson, M. A., Vadnal, R. E. & Parthasarathy, R. N. Regional changes in rat brain inositol monophosphatase 1 (IMPase 1) activity with chronic lithium treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 55–60 (2003).
pubmed: 12551726
doi: 10.1016/S0278-5846(02)00315-9
pmcid: 12551726
Giles, J. J. & Bannigan, J. G. The effects of lithium on vascular development in the chick area vasculosa. J. Anat. 194(Pt 2), 197–205 (1999).
pubmed: 10337951
pmcid: 1467913
doi: 10.1046/j.1469-7580.1999.19420197.x
Klug, S., Collins, M., Nagao, T., Merker, H. J. & Neubert, D. Effect of lithium on rat embryos in culture: growth, development, compartmental distribution and lack of a protective effect of inositol. Arch. Toxicol. 66, 719–728 (1992).
pubmed: 1337824
doi: 10.1007/BF01972623
pmcid: 1337824
Hedgepeth, C. M. et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997).
pubmed: 9169052
doi: 10.1006/dbio.1997.8552
pmcid: 9169052
Copp, A. J., Stanier, P. & Greene, N. D. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 12, 799–810 (2013).
pubmed: 23790957
pmcid: 4023229
doi: 10.1016/S1474-4422(13)70110-8
Cavalli, P., Tonni, G., Grosso, E. & Poggiani, C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 91, 962–965 (2011).
pubmed: 21956977
doi: 10.1002/bdra.22853
pmcid: 21956977
Wentzel, P., Wentzel, C. R., Gareskog, M. B. & Eriksson, U. J. Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology 63, 193–201 (2001).
pubmed: 11320530
doi: 10.1002/tera.1034
pmcid: 11320530
Kappen, C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. Am. J. Med. Genet. C Semin. Med. Genet. 163C, 333–356 (2013).
pubmed: 24124024
doi: 10.1002/ajmg.c.31380
pmcid: 24124024
Einat, H. & Belmaker, R. H. The effects of inositol treatment in animal models of psychiatric disorders. J. Affect Disord. 62, 113–121 (2001).
pubmed: 11172878
doi: 10.1016/S0165-0327(00)00355-4
pmcid: 11172878
Armentero, M. T. et al. Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol. Aging 32, 2142–2151 (2011).
pubmed: 20106550
doi: 10.1016/j.neurobiolaging.2010.01.004
pmcid: 20106550