RLIM Is a Candidate Dosage-Sensitive Gene for Individuals with Varying Duplications of Xq13, Intellectual Disability, and Distinct Facial Features.
Adolescent
Australia
Child
Child, Preschool
Chromosome Duplication
Face
Female
Gene Dosage
Hemizygote
Heterozygote
Humans
Intellectual Disability
/ genetics
Male
Middle Aged
Monocarboxylic Acid Transporters
/ genetics
Mothers
Mutation, Missense
Nerve Tissue Proteins
/ genetics
Pedigree
Phenotype
Symporters
/ genetics
Ubiquitin-Protein Ligases
/ genetics
X Chromosome Inactivation
Young Adult
NEXMIF
RLIM
Tonne-Kalscheuer syndrome
Xq13
autism
chromosomal duplication
chromosomal microarray
dosage sensitive gene
intellectual disability
whole genome sequencing
Journal
American journal of human genetics
ISSN: 1537-6605
Titre abrégé: Am J Hum Genet
Pays: United States
ID NLM: 0370475
Informations de publication
Date de publication:
03 12 2020
03 12 2020
Historique:
received:
22
05
2020
accepted:
13
10
2020
pubmed:
8
11
2020
medline:
13
1
2021
entrez:
7
11
2020
Statut:
ppublish
Résumé
Interpretation of the significance of maternally inherited X chromosome variants in males with neurocognitive phenotypes continues to present a challenge to clinical geneticists and diagnostic laboratories. Here we report 14 males from 9 families with duplications at the Xq13.2-q13.3 locus with a common facial phenotype, intellectual disability (ID), distinctive behavioral features, and a seizure disorder in two cases. All tested carrier mothers had normal intelligence. The duplication arose de novo in three mothers where grandparental testing was possible. In one family the duplication segregated with ID across three generations. RLIM is the only gene common to our duplications. However, flanking genes duplicated in some but not all the affected individuals included the brain-expressed genes NEXMIF, SLC16A2, and the long non-coding RNA gene FTX. The contribution of the RLIM-flanking genes to the phenotypes of individuals with different size duplications has not been fully resolved. Missense variants in RLIM have recently been identified to cause X-linked ID in males, with heterozygous females typically having normal intelligence and highly skewed X chromosome inactivation. We detected consistent and significant increase of RLIM mRNA and protein levels in cells derived from seven affected males from five families with the duplication. Subsequent analysis of MDM2, one of the targets of the RLIM E3 ligase activity, showed consistent downregulation in cells from the affected males. All the carrier mothers displayed normal RLIM mRNA levels and had highly skewed X chromosome inactivation. We propose that duplications at Xq13.2-13.3 including RLIM cause a recognizable but mild neurocognitive phenotype in hemizygous males.
Identifiants
pubmed: 33159883
pii: S0002-9297(20)30363-3
doi: 10.1016/j.ajhg.2020.10.005
pmc: PMC7820564
pii:
doi:
Substances chimiques
Monocarboxylic Acid Transporters
0
NEXMIF protein, human
0
Nerve Tissue Proteins
0
SLC16A2 protein, human
0
Symporters
0
RLIM protein, human
EC 2.3.2.27
Ubiquitin-Protein Ligases
EC 2.3.2.27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1157-1169Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Informations de copyright
Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Références
Nat Commun. 2018 Sep 20;9(1):3829
pubmed: 30237402
Am J Hum Genet. 2019 Mar 7;104(3):542-552
pubmed: 30827498
J Child Neurol. 2019 Feb;34(2):86-93
pubmed: 30458662
J Vis Exp. 2013 Jul 07;(77):e3779
pubmed: 23852182
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Am J Med Genet A. 2015 Jun;167(6):1349-53
pubmed: 25900396
Am J Med Genet B Neuropsychiatr Genet. 2015 Dec;168(8):669-77
pubmed: 26290131
Mol Psychiatry. 2019 Nov;24(11):1748-1768
pubmed: 29728705
Am J Med Genet A. 2016 Mar;170(3):703-6
pubmed: 26576034
Cell Rep. 2018 May 8;23(6):1599-1611
pubmed: 29742418
Nature. 2017 Oct 11;550(7675):244-248
pubmed: 29022598
Am J Hum Genet. 2009 Apr;84(4):524-33
pubmed: 19344873
Biochem Biophys Res Commun. 2019 Apr 30;512(2):421-427
pubmed: 30902390
Hum Genet. 2014 May;133(5):625-38
pubmed: 24326587
Hum Mol Genet. 2015 Dec 20;24(25):7171-81
pubmed: 26443594
Am J Hum Genet. 2012 Aug 10;91(2):252-64
pubmed: 22840365
Hum Genet. 2017 Apr;136(4):377-386
pubmed: 28251352
Am J Med Genet A. 2018 Jun;176(6):1455-1462
pubmed: 29693785
Mol Cell. 2018 May 3;70(3):462-472.e8
pubmed: 29706539
Nature. 2012 Apr 29;485(7398):386-90
pubmed: 22596162
Mol Genet Genomic Med. 2018 Mar;6(2):186-199
pubmed: 29314763
Mol Psychiatry. 2016 Jan;21(1):133-48
pubmed: 25644381
Eur J Hum Genet. 2015 Nov;23(11):1513-8
pubmed: 25649377
Hum Mol Genet. 2013 Aug 15;22(16):3306-14
pubmed: 23615299
Acta Neurol Belg. 2020 Feb;120(1):205-207
pubmed: 29417424
Clin Genet. 2015 Sep;88(3):297-9
pubmed: 25394356
Cell. 2009 Nov 25;139(5):999-1011
pubmed: 19945382
Clin Genet. 2017 May;91(5):756-763
pubmed: 27568816
J Biol Chem. 2019 Jan 4;294(1):130-141
pubmed: 30413534
J Med Genet. 2016 Dec;53(12):850-858
pubmed: 27358180
Nat Genet. 1997 Jan;15(1):70-3
pubmed: 8988171
Biochem Biophys Res Commun. 2018 Jan 1;495(1):312-318
pubmed: 29117536
Eur J Hum Genet. 2015 Dec;23(12):1652-6
pubmed: 25735484
Am J Hum Genet. 2008 Feb;82(2):432-43
pubmed: 18252223
Eur J Hum Genet. 2018 Jan;26(1):64-74
pubmed: 29180823
Clin Genet. 2008 Feb;73(2):188-90
pubmed: 18070138
Am J Hum Genet. 1992 Dec;51(6):1229-39
pubmed: 1281384
Hum Mol Genet. 2017 Oct 15;26(20):3995-4010
pubmed: 29016856
Am J Hum Genet. 2004 Jan;74(1):168-75
pubmed: 14661163
Biochem Biophys Res Commun. 2019 Apr 23;512(1):79-86
pubmed: 30871773
eNeuro. 2016 Oct 28;3(5):
pubmed: 27822498
Am J Hum Genet. 2007 Feb;80(2):345-52
pubmed: 17236139
J Pediatr Genet. 2015 Sep;4(3):159-67
pubmed: 27617127
J Med Genet. 2004 Oct;41(10):736-42
pubmed: 15466006
Am J Hum Genet. 2005 Sep;77(3):442-53
pubmed: 16080119
Best Pract Res Clin Endocrinol Metab. 2007 Jun;21(2):307-21
pubmed: 17574010