Amino Acid Motifs
Carbon Isotopes
Exoribonucleases
/ chemistry
Hydrogen
Hydrogen Bonding
Ligands
Magnetic Resonance Spectroscopy
Methyltransferases
Nitrogen Isotopes
Protein Structure, Secondary
RNA, Viral
SARS-CoV-2
/ chemistry
Viral Envelope
Viral Nonstructural Proteins
/ chemistry
Viral Regulatory and Accessory Proteins
/ chemistry
Virus Replication
Zinc Fingers
Covid19-NMR
Non-structural protein
SARS-CoV-2
Solution NMR-spectroscopy
Journal
Biomolecular NMR assignments
ISSN: 1874-270X
Titre abrégé: Biomol NMR Assign
Pays: Netherlands
ID NLM: 101472371
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
07
08
2020
accepted:
03
11
2020
pubmed:
8
11
2020
medline:
7
4
2021
entrez:
7
11
2020
Statut:
ppublish
Résumé
The international Covid19-NMR consortium aims at the comprehensive spectroscopic characterization of SARS-CoV-2 RNA elements and proteins and will provide NMR chemical shift assignments of the molecular components of this virus. The SARS-CoV-2 genome encodes approximately 30 different proteins. Four of these proteins are involved in forming the viral envelope or in the packaging of the RNA genome and are therefore called structural proteins. The other proteins fulfill a variety of functions during the viral life cycle and comprise the so-called non-structural proteins (nsps). Here, we report the near-complete NMR resonance assignment for the backbone chemical shifts of the non-structural protein 10 (nsp10). Nsp10 is part of the viral replication-transcription complex (RTC). It aids in synthesizing and modifying the genomic and subgenomic RNAs. Via its interaction with nsp14, it ensures transcriptional fidelity of the RNA-dependent RNA polymerase, and through its stimulation of the methyltransferase activity of nsp16, it aids in synthesizing the RNA cap structures which protect the viral RNAs from being recognized by the innate immune system. Both of these functions can be potentially targeted by drugs. Our data will aid in performing additional NMR-based characterizations, and provide a basis for the identification of possible small molecule ligands interfering with nsp10 exerting its essential role in viral replication.
Identifiants
pubmed: 33159807
doi: 10.1007/s12104-020-09984-1
pii: 10.1007/s12104-020-09984-1
pmc: PMC7648550
doi:
Substances chimiques
Carbon Isotopes
0
Ligands
0
NSP10 protein, SARS-CoV-2
0
NSP16 protein, SARS-CoV-2
0
Nitrogen Isotopes
0
Nitrogen-15
0
RNA, Viral
0
Viral Nonstructural Proteins
0
Viral Regulatory and Accessory Proteins
0
Hydrogen
7YNJ3PO35Z
Methyltransferases
EC 2.1.1.-
Exoribonucleases
EC 3.1.-
NSP14 protein, SARS-CoV-2
EC 3.1.-
Carbon-13
FDJ0A8596D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
65-71Subventions
Organisme : Goethe-Universität Frankfurt am Main
ID : Goethe-Corana Funds
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB 902
Organisme : Deutsche Forschungsgemeinschaft
ID : FuGG grant
Organisme : Hessisches Ministerium für Wissenschaft und Kunst
ID : BMRZ
Références
Aouadi W, Blanjoie A, Vasseur JJ, Debart F, Canard B, Decroly E (2017) Binding of the methyl donor S-adenosyl-L-methionine to middle east respiratory syndrome coronavirus 2’-O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J Virol. https://doi.org/10.1128/jvi.02217-16
doi: 10.1128/jvi.02217-16
Baxter NJ, Williamson MP (1997) Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR 9:359–369. https://doi.org/10.1023/a:1018334207887
doi: 10.1023/a:1018334207887
Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E (2010) In vitro reconstitution of sars-coronavirus mRNA cap methylation. PLoS Pathog 6:1–13. https://doi.org/10.1371/journal.ppat.1000863
doi: 10.1371/journal.ppat.1000863
Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E (2012) RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA 109:9372–9377. https://doi.org/10.1073/pnas.1201130109
doi: 10.1073/pnas.1201130109
Bouvet M et al (2014) Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem 289:25783–25796. https://doi.org/10.1074/jbc.m114.577353
doi: 10.1074/jbc.m114.577353
Brockway SM, Lu XT, Peters TR, Dermody TS, Denison MR (2004) Intracellular localization and protein interactions of the gene 1 protein p28 during mouse hepatitis virus replication. J Virol 78:11551–11562. https://doi.org/10.1128/jvi.78.21.11551-11562.2004
doi: 10.1128/jvi.78.21.11551-11562.2004
Chen Y et al (2011) Biochemical and structural insights into the mechanisms of sars coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002294
doi: 10.1371/journal.ppat.1002294
Daffis S et al (2010) 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–456. https://doi.org/10.1038/nature09489
doi: 10.1038/nature09489
Decroly E et al (2011) Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-o-methyltransferase nsp10/nsp16 complex. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002059
doi: 10.1371/journal.ppat.1002059
de la Torre GJ, Huertas ML, Carrasco B (2000) HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147(1):138–146. https://doi.org/10.1006/jmre.2000.2170
doi: 10.1006/jmre.2000.2170
Farjon J, Boisbouvier JR, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577. https://doi.org/10.1021/ja901633y
doi: 10.1021/ja901633y
Ferron F et al (2017) Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA 115:E162–E171. https://doi.org/10.1073/pnas.1718806115
doi: 10.1073/pnas.1718806115
Joseph JS et al (2006) Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 80:7894–7901. https://doi.org/10.1128/jvi.00467-06
doi: 10.1128/jvi.00467-06
Kornhaber GJ, Snyder D, Moseley HN, Montelione GT (2006) Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data. J Biomol NMR 34:259–269. https://doi.org/10.1007/s10858-006-0027-5
doi: 10.1007/s10858-006-0027-5
Krafcikova P, Silhan J, Nencka R, Boura E (2020) Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun 11:1–7. https://doi.org/10.1038/s41467-020-17495-9
doi: 10.1038/s41467-020-17495-9
Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550. https://doi.org/10.1093/nar/gkg161
doi: 10.1093/nar/gkg161
Lai MM (1990) Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol 44:303–333. https://doi.org/10.1146/annurev.mi.44.100190.001511
doi: 10.1146/annurev.mi.44.100190.001511
Lee D, Hilty C, Wider G, Wüthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:72–76
doi: 10.1016/j.jmr.2005.08.014
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830
doi: 10.1093/bioinformatics/btu830
Ma Y et al (2015) Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 112:9436–9441. https://doi.org/10.1073/pnas.1508686112
doi: 10.1073/pnas.1508686112
Matthes N, Mesters JR, Coutard B, Canard B, Snijder EJ, Moll R, Hilgenfeld R (2006) The non-structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids. FEBS Lett 580:4143–4149. https://doi.org/10.1016/j.febslet.2006.06.061
doi: 10.1016/j.febslet.2006.06.061
Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, Ziebuhr J (2006) Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 103:5108–5113. https://doi.org/10.1073/pnas.0508200103
doi: 10.1073/pnas.0508200103
Rennella E, Brutscher B (2013) Fast real-time NMR methods for characterizing short-lived molecular states. ChemPhysChem 14:3059–3070. https://doi.org/10.1002/cphc.201300339
doi: 10.1002/cphc.201300339
Shen Y, Bax AD (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241. https://doi.org/10.1007/s10858-013-9741-y
doi: 10.1007/s10858-013-9741-y
Snijder EJ, Decroly E, Ziebuhr J (2016) The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 96:59–126. https://doi.org/10.1016/bs.aivir.2016.08.008
doi: 10.1016/bs.aivir.2016.08.008
Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. https://doi.org/10.1007/s10858-013-9715-0
doi: 10.1007/s10858-013-9715-0
Su D et al (2006) Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J Virol 80:7902–7908. https://doi.org/10.1128/jvi.00483-06
doi: 10.1128/jvi.00483-06
Viswanathan T et al (2020) Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun 11:4–10. https://doi.org/10.1038/s41467-020-17496-8
doi: 10.1038/s41467-020-17496-8
Wang Y et al (2015) Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J Virol 89:8416–8427. https://doi.org/10.1128/jvi.00948-15
doi: 10.1128/jvi.00948-15
Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87. https://doi.org/10.1016/j.pnmrs.2010.07.004
doi: 10.1016/j.pnmrs.2010.07.004
Wu F et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269. https://doi.org/10.1038/s41586-020-2008-3
doi: 10.1038/s41586-020-2008-3
Züst R et al (2011) Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143. https://doi.org/10.1038/ni.1979
doi: 10.1038/ni.1979