Evaluating and Comparing Behavioural and Electrophysiological Estimates of Neural Health in Cochlear Implant Users.

ECAP cochlear implants computational modelling inter-phase gap multi-pulse integration neural health neural survival polarity effect psychophysics

Journal

Journal of the Association for Research in Otolaryngology : JARO
ISSN: 1438-7573
Titre abrégé: J Assoc Res Otolaryngol
Pays: United States
ID NLM: 100892857

Informations de publication

Date de publication:
02 2021
Historique:
received: 02 03 2020
accepted: 14 10 2020
pubmed: 6 11 2020
medline: 24 3 2022
entrez: 5 11 2020
Statut: ppublish

Résumé

Variations in neural health along the cochlea can degrade the spectral and temporal representation of sounds conveyed by cochlear implants (CIs). We evaluated and compared one electrophysiological measure and two behavioural measures that have been proposed as estimates of neural health patterns, in order to explore the extent to which the different measures provide converging and consistent neural health estimates. All measures were obtained from the same 11 users of the Cochlear Corporation CI. The two behavioural measures were multipulse integration (MPI) and the polarity effect (PE), both measured on each of seven electrodes per subject. MPI was measured as the difference between thresholds at 80 pps and 1000 pps, and PE as the difference in thresholds between cathodic- and anodic-centred quadraphasic (QP) 80-pps pulse trains. It has been proposed that good neural health corresponds to a large MPI and to a large negative PE (lower thresholds for cathodic than anodic pulses). The electrophysiological measure was the effect of interphase gap (IPG) on the offset of the ECAP amplitude growth function (AGF), which has been correlated with spiral ganglion neuron density in guinea pigs. This 'IPG offset' was obtained on the same subset of electrodes used for the behavioural measures. Despite high test-retest reliability, there were no significant correlations between the neural health estimates for either within-subject comparisons across the electrode array, or between-subject comparisons of the means. A phenomenological model of a population of spiral ganglion neurons was then used to investigate physiological mechanisms that might underlie the different neural health estimates. The combined experimental and modelling results provide evidence that PE, MPI and IPG offset may reflect different characteristics of the electrode-neural interface.

Identifiants

pubmed: 33150541
doi: 10.1007/s10162-020-00773-0
pii: 10.1007/s10162-020-00773-0
pmc: PMC7822986
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

67-80

Subventions

Organisme : Medical Research Council
ID : MC_UU_00005/3
Pays : United Kingdom
Organisme : U.K. Medical Research Council
ID : RG91365

Références

Hear Res. 1993 Mar;66(1):108-20
pubmed: 8473242
Hear Res. 2001 Mar;153(1-2):43-63
pubmed: 11223296
Hear Res. 2005 Jul;205(1-2):210-24
pubmed: 15953530
Hear Res. 2020 Aug 18;:108057
pubmed: 32883545
Acta Otolaryngol. 1984 Nov-Dec;98(5-6):418-27
pubmed: 6098123
Hear Res. 2003 Nov;185(1-2):77-89
pubmed: 14599695
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
J Assoc Res Otolaryngol. 2014 Apr;15(2):187-202
pubmed: 24469861
J Assoc Res Otolaryngol. 2001 Sep;2(3):216-32
pubmed: 11669395
J Assoc Res Otolaryngol. 2020 Jun;21(3):259-275
pubmed: 32342256
J Acoust Soc Am. 2017 Mar;141(3):EL243
pubmed: 28372106
Hear Res. 2016 Nov;341:50-65
pubmed: 27521841
Hear Res. 2006 May;215(1-2):47-55
pubmed: 16644157
J Assoc Res Otolaryngol. 2017 Apr;18(2):323-342
pubmed: 28054149
Int J Audiol. 2019 Sep;58(9):553-564
pubmed: 31012768
Hear Res. 2015 Apr;322:77-88
pubmed: 25261772
Ann N Y Acad Sci. 1983;405:459-84
pubmed: 6575668
Hear Res. 1999 Apr;130(1-2):171-88
pubmed: 10320107
J Assoc Res Otolaryngol. 2018 Oct;19(5):559-567
pubmed: 29881937
J Assoc Res Otolaryngol. 2020 Feb;21(1):89-104
pubmed: 32020417
J Acoust Soc Am. 1990 Sep;88(3):1385-91
pubmed: 2229673
Hear Res. 2010 Oct 1;269(1-2):12-22
pubmed: 20708672
J Acoust Soc Am. 2003 Apr;113(4 Pt 1):2054-63
pubmed: 12703716
Hear Res. 1989 Jul;40(3):197-204
pubmed: 2793602
Hear Res. 2018 Mar;359:50-63
pubmed: 29307495
Hear Res. 2017 Mar;346:62-70
pubmed: 28213133
Hear Res. 1990 Nov;49(1-3):141-54
pubmed: 2292494
J Acoust Soc Am. 2016 Mar;139(3):EL70-5
pubmed: 27036290
Hear Res. 2014 Oct;316:44-56
pubmed: 25093283
Otol Neurotol. 2010 Sep;31(7):1041-8
pubmed: 20634770
Hear Res. 1984 Jun;14(3):205-23
pubmed: 6480510
J Acoust Soc Am. 2014 Sep;136(3):1257
pubmed: 25190399
Hear Res. 2020 Aug;393:108001
pubmed: 32535276
Hear Res. 1988 Apr;33(1):11-33
pubmed: 3372368
J Acoust Soc Am. 1998 Aug;104(2 Pt 1):1061-74
pubmed: 9714925
J Assoc Res Otolaryngol. 2015 Aug;16(4):523-34
pubmed: 25990549
Hear Res. 2020 May;390:107928
pubmed: 32143110
Hear Res. 1987 Dec 31;31(3):287-311
pubmed: 3325482
Trends Hear. 2017 Jan;21:2331216517690108
pubmed: 28150534
Ear Hear. 2018 Mar/Apr;39(2):344-358
pubmed: 28885234
J Assoc Res Otolaryngol. 2010 Jun;11(2):245-65
pubmed: 19902297
Acta Otolaryngol. 1975 Mar-Apr;79(3-4):266-75
pubmed: 1094788
Hear Res. 2005 Jul;205(1-2):143-56
pubmed: 15953524
J Assoc Res Otolaryngol. 2019 Aug;20(4):415-430
pubmed: 30949879
J Assoc Res Otolaryngol. 2019 Aug;20(4):431-448
pubmed: 31161338
J Acoust Soc Am. 2004 May;115(5 Pt 1):1885-8
pubmed: 15139595
Front Neurosci. 2019 Nov 05;13:1173
pubmed: 31749676
Hear Res. 1997 Jun;108(1-2):112-44
pubmed: 9213127
J Assoc Res Otolaryngol. 2017 Jun;18(3):513-527
pubmed: 28138791
J Acoust Soc Am. 2011 Dec;130(6):3954-68
pubmed: 22225050
Hear Res. 2012 Feb;284(1-2):25-32
pubmed: 22245714
Hear Res. 1985 May;18(2):135-43
pubmed: 3840159
J Acoust Soc Am. 2016 Sep;140(3):1537
pubmed: 27914377
J Assoc Res Otolaryngol. 2021 Feb;22(1):81-94
pubmed: 33108575
J Acoust Soc Am. 2013 Jul;134(1):503-9
pubmed: 23862825
Hear Res. 2018 Apr;361:121-137
pubmed: 29496363
J Assoc Res Otolaryngol. 2014 Apr;15(2):293-304
pubmed: 24477546
Ann Otol Rhinol Laryngol Suppl. 1984 Jul-Aug;112:76-82
pubmed: 6431887
J Assoc Res Otolaryngol. 2018 Feb;19(1):99-111
pubmed: 29086155
Ear Hear. 2018 Nov/Dec;39(6):1136-1145
pubmed: 29529006
J Assoc Res Otolaryngol. 2017 Dec;18(6):731-750
pubmed: 28776202
J Assoc Res Otolaryngol. 2016 Feb;17(1):1-17
pubmed: 26501873
Audiol Neurootol. 2013;18(4):247-60
pubmed: 23881208
Laryngoscope. 1978 Aug;88(8 Pt 1):1231-46
pubmed: 672357
Ear Hear. 2006 Aug;27(4):399-408
pubmed: 16825889
Trends Amplif. 2010 Jun;14(2):84-95
pubmed: 20724356
J Assoc Res Otolaryngol. 2017 Dec;18(6):751-769
pubmed: 28717876
Hear Res. 1999 Apr;130(1-2):197-218
pubmed: 10320109

Auteurs

Tim Brochier (T)

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK. tb648@cam.ac.uk.
Cambridge Hearing Group, Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK. tb648@cam.ac.uk.

François Guérit (F)

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.

John M Deeks (JM)

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.

Charlotte Garcia (C)

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.

Manohar Bance (M)

Cambridge Hearing Group, Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.

Robert P Carlyon (RP)

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH