Meiotic Instability Generates a Pathological Condition in Mammalian Ovum.


Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
06 2021
Historique:
accepted: 27 10 2020
pubmed: 4 11 2020
medline: 7 4 2022
entrez: 3 11 2020
Statut: ppublish

Résumé

Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3',5' adenosine monophosphate (cAMP) and calcium (Ca

Identifiants

pubmed: 33140233
doi: 10.1007/s12015-020-10072-z
pii: 10.1007/s12015-020-10072-z
doi:

Substances chimiques

Maturation-Promoting Factor EC 2.7.11.22
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

777-784

Références

Tripathi, A., Premkumar, K.V., Chaube, S.K. (2010). Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 223; 592-600.
Sanders, J. R., & Swann, K. (2016). Molecular triggers of ovum activation at fertilization in mammals. Reproduction, 152, R41–R50.
pubmed: 27165049
Zernika-Goetz, M. (1991). Spontaneous and induced activation of rat oocytes. Molecular Reproduction Development, 28, 169–176.
Ross, P. J., Yabuuchi, A., & Cibelli, J. B. (2006). Oocyte spontaneous activation in different rat strains. Cloning and Stem Cells, 8, 275–282.
pubmed: 17196092
Chaube, S. K., Dubey, P. K., Mishra, S. K., & Shrivastav, T. G. (2007). Verapamil reversibly inhibits spontaneous parthenogenetic activation in aged rat eggs cultured in vitro. Cloning and Stem Cells, 9, 608–617.
pubmed: 18154520
Chaube, S. K., Khatun, S., Misra, S. K., & Shrivastav, T. G. (2008). Calcium ionophore-induced egg activation and apoptosis with the generation of intracellular hydrogen peroxide. Free Radical Research, 42, 212–220.
pubmed: 18344115
Chebotareva, T., Taylor, J., Mullins, J. J., & Wilmut, I. (2011). Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Molecular Reproduction Development, 78, 795–807.
pubmed: 21910153
Premkumar, K. V., & Chaube, S. K. (2013). An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. Journal Assisted Reproduction Genetices, 30, 117–123.
Premkumar, K. V., & Chaube, S. K. (2014). RyR channel-mediated increase of cytosolic free calcium level signals cyclin B1 degradation during abortive spontaneous egg activation in rat. In Vitro Cell & Developmental Biology-Animal, 50, 640–647.
Chaube, S. K., Premkumar, K. V., Prasad, S., Tiwari, M., Gupta, A., Sharma, A., Sahu, K., & Yadav, P. K. (2018). Inability to maintain metaphase-II arrest due to increase of reactive oxygen species in rat eggs. Reactive Oxygen Species, 5, 167–175.
Keefer, C. L., & Schuetz, A. W. (1982). Spontaneous activation of ovulated rat oocytes during in vitro culture. Journal of Experimental Zoology, 224, 371–377.
Xu, Z., Abbott, A., Kopf, G. S., Schultz, R. M., & Ducibella, T. (1997). Spontaneous activation of ovulated mouse eggs: Time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biology of Reproduction, 57, 743–750.
pubmed: 9314575
Lord, T., Nixon, B., Jones, K. T., & Aitken, R. J. (2013). Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biology of Reproduction, 88, 67.
pubmed: 23365415
Ruddock, N. T., Machaty, Z., Cabot, R. A., & Prather, R. S. (2001). (2001). Porcine oocyte activation: Roles of calcium and pH. Molecular Reproduction Development, 59, 227–234.
pubmed: 11389559
Ito, J., Shimada, M., & Terada, T. (2003). Effect of protein kinase C inhibitor on mitogen-activated protein kinase and p34cdc2 kinase activity during parthenogenetic activation of porcine oocytes by calcium ionophore. Biology of Reproduction, 69, 1675–1682.
pubmed: 12890733
Ito, J., Shimada, M., & Terada, T. (2004). Mitogen-activated protein kinase kinase inhibitor suppresses cyclin B1 synthesis and reactivation of p34cdc2 kinase, which improves pronuclear formation rate in matured porcine oocytes activated by Ca2+ ionophore. Biology of Reproduction, 70, 797–804.
pubmed: 14627544
Sergeev, I. N., & Norman, A. V. (2003). Calcium as a mediator of apoptosis in bovine oocytes and preimplantation embryos. Endocrine, 22, 169–176.
pubmed: 14665722
Juetten, J., & Bavister, B. D. (1983). Effects of egg aging on in vitro fertilization and first cleavage division in the hamster. Gamete Research, 8, 219–230.
Lu, Q., Chen, Z. J., Gao, X., Ma, S. Y., Li, M., Hu, J. M., & Li, Y. (2006). Oocyte activation with calcium ionophore A23187 and puromycin on human oocytes that failed to fertilize after intracytoplasmic sperm injection. Zhonghua Fu Chan Ke Za Zhi, 41, 182–185.
pubmed: 16640885
Escrich, L., Grau, N., Mercader, A., Rubio, C., Pellicer, A., & Escriba, M. J. (2011). Spontaneous in vitro maturation and artificial activation of human germinal vesicle oocytes recovered from stimulated cycles. Journal of Assisted Reproduction Genetices, 28, 111–117.
Combelles, C. M., Cekleniak, N. A., Racowsky, C., & Albertini, D. F. (2002). Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Human Reproduction, 17, 1006–1016.
pubmed: 11925398
Combelles, C. M., Fissore, R. A., Albertini, D. F., & Racowsky, C. (2005). In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Human Reproduction, 20, 1349–1358.
pubmed: 15695316
Combelles, C. M., Kearns, W. G., Fox, J. H., & Racowsky, C. (2011). Cellular and genetic analysis of oocytes and embryo in a case of spontaneous oocyte activation. Human Reproduction, 26, 545–552.
pubmed: 21224285
Socolov, R., Ebner, T., Gorduza, V., Martiniuc, V., Angioni, S., & Socolov, D. (2015). Self-oocyte activation and parthenogenesis an unusual outcome of a misconducted IVF cycle. Gynecology Endocrinology, 31, 529–530.
Madgwick, S., & Jones, K. T. (2007). How eggs arrest at metaphase II: MPF stabilization plus APC/C inhibition equals cytostatic factor. Cell Division, 2, 4–11.
pubmed: 17257429 pmcid: 1794241
Prasad, S., Tiwari, M., Koch, B., & Chaube, S. K. (2015a). Morphological, cellular and molecular changes during postovulatory egg aging in mammals. Journal of Biomedical Science, 22, 36.
pubmed: 25994054 pmcid: 4440248
Chaube, S. K., Prasad, S., Tiwari, M., & Gupta, A. (2016). Rat: An interesting model to study oocyte meiosis in mammals. Research and Reviews: Journal of Zoological Sciences, 4, 25–27.
Prasad, S., Tiwari, M., Tripathi, A., Pandey, A. N., & Chaube, S. K. (2015b). Changes in signal molecules and maturation promoting factor levels associate with spontaneous resumption of meiosis in rat oocytes. Cell Biology International, 39, 759–769.
pubmed: 25604742
Prasad, S., & Chaube, S. K. (2017). Increased telomerase reverse transcriptase expression associates with spontaneous exit from M-II arrest in rat eggs. Cellular Reprogramming, 19, 27–34.
pubmed: 27898217
Sharma, A., Tiwari, M., Gupta, A., Pandey, A., Yadav, P. K., & Chaube, S. K. (2018). Oocyte journey from metaphase-I to metaphase-II in mammals. Journal of Cellular Physiology, 233, 5530–5536.
pubmed: 29331044
Colledge, W. H., Carlton, M. B., Udy, G. B., & Evans, M. J. (1994). Disruption of c-Mos causes parthenogenetic development of unfertilized mouse eggs. Nature, 370, 65–68.
pubmed: 8015609
Hashimoto, N., Watanabe, N., Furuta, Y., Tamemoto, H., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y., & Aizawai, S. (1994). Parthenogenetic activation of oocytes in c-Mos-deficient mice. Nature, 370, 68–71.
pubmed: 8015610
Hirao, Y., & Eppig, J. J. (1997). Parthenogenetic development of Mos-deficient mouse oocytes. Molecular Reproduction Development, 48, 391–396.
pubmed: 9322252
Premkumar, K. V., & Chaube, S. K. (2016). Increased level of reactive oxygen species persuades postovulatory aging-mediated spontaneous egg activation in rat eggs cultured in vitro. Vitro Cell Devevelopmetal Biology- Animal, 52(5), 576–588.
Prasad, S., Koch, B., & Chaube, S. K. (2016). Maturation promoting factor destabilization persuades postovulatory aging-mediated abortive spontaneous egg activation in rat. Development Growth Differentiation, 58, 293–302.
Van Blerkom, J., Davis, P. W., & Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction, 10, 415–424.
pubmed: 7769073
Cheon, Y. P., Kim, S. W., Kim, S. J., Yeom, Y. I., Cheong, C., & Ha, K. S. (2000). The role of rho a in the germinal vesicle breakdown of mouse oocytes. Biochemica Biophysica Research Communication, 273, 997–1002.
Bellomo, F., Piccoli, C., Cocco, T., Scacco, S., Papa, F., Gaballo, A., Boffoli, D., Signorile, A., D'Aprile, A., Scrima, R., Sardanelli, A. M., Capitanio, N., & Papa, S. (2006). Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxidants Redox Signaling, 8, 495–502.
pubmed: 16677093
Tripathi, A., Khatun, S., Pandey, A. N., Misra, S. K., Chaube, R., Shrivastava, T. G., & Chaube, S. K. (2009). Intracellular levels of hydrogen peroxide and nitric oxide in oocyte at various stages of meiotic cell cycle and apoptosis. Free Radical Research, 43, 287–294.
pubmed: 19184696
Piccoli, C., Scacco, S., Bellomo, F., Signorile, A., Iuso, A., Boffoli, D., Scrima, R., Capitanio, N., & Papa, S. (2006). cAMP controls oxygen metabolism in mammalian cells. FEBS Letters, 580, 4539–4543.
pubmed: 16870178
Pandey, A. N., & Chaube, S. K. (2014). Increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. Bio Reseach Open Access, 3, 183–191.
Tatone, C., Emidio, G. D., Barbaro, R., Vento, M., Ciriminna, R., & Artini, P. G. (2011). Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: Insights from the mouse model. Theriogenology, 76, 864–873.
pubmed: 21705053
Dai, X., Lu, Y., Zhang, M., Miao, Y., Zhou, C., Cui, Z., & Xiong, B. (2017). Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. Human Reproduction, 32, 598–606.
pubmed: 28137755
Takahashi, T., Takahashi, E., Igarashi, H., Tezuka, N., & Kurachi, H. (2003). Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Molecular Reproduction Development, 66, 143–152.
pubmed: 12950101
Chaube, S. K., Khatun, S., Mishra, S. K., & Shrivastav, T. G. (2008). Calcium ionophore-induced egg activation and apoptosis are associated with the generation of intracellular hydrogen peroxide. Free Radical Research, 42, 212–220.
pubmed: 18344115
Abu Soud, H. M., & Stuehr, D. J. (1993). Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proceeding of National Acadamy of Science USA, 90, 10769–10772.
Zhang, N., Wakai, T., & Fissore, R. A. (2011). Caffeine alleviates the deterioration of Ca (2+) release mechanisms and fragmentation of in vitro-aged mouse eggs. Molecular Reproduction Development, 78, 684–701.
pubmed: 22095868
Chakraborti, T., Das, S., Mondal, M., Roychoudhury, S., & Chakraborti, S. (1999). Oxidation, mitochondria, and calcium; an overview. Cell Signaling, 11, 77–85.
Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology Medicine, 29, 222–230.
pubmed: 11035250
Tang, D. W., Fang, Y., Liu, Z. X., Wu, Y., Wang, X. L., Zhao, S., Han, G. C., & Zeng, S. M. (2013). The disturbances of endoplasmic reticulum calcium homeostasis caused by increased intracellular reactive oxygen species contributes to fragmentation in aged porcine oocytes. Biology of Reproduction, 89, 124.
pubmed: 24089204
Ito, J., Kaneko, R., & Hirabayashi, M. (2006). The regulation of calcium/calmodulin-dependent protein kinase II during oocyte activation in the rat. Journal of Reproduction Development, 52, 439–447.
Yoo, J. C., & Smith, L. C. (2007). Extracellular calcium induces activation of Ca
Zhang, C. X., Cui, W., Zhang, M., Zhang, J., Wang, T. Y., Zhu, J., Jiao, G. Z., & Tan, J. H. (2014). Role of Na+/Ca2+ exchanger (NCX) in modulating postovulatory aging of mouse and rat oocytes. PLoS One, 9, e93446.
pubmed: 24695407 pmcid: 3973580
Zhang, D., Ma, W., Li, Y. H., Hou, Y., Li, S. W., Meng, X. Q., Sun, X. F., Sun, Q. Y., & Wang, W. H. (2004). Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis I. Biology of Reproduction, 71, 740–748.
pubmed: 15115722
Homer, H. A., McDougall, A., Levasseur, M., Murdoch, A. P., & Herbert, M. (2005). Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction, 130, 829–843.
pubmed: 16322543
Schmidt, A., Duncan, P. I., Rauh, N. R., Sauer, G., Fry, A. M., Nigg, E. A., & Mayer, T. U. (2005). Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes & Development, 19, 502–513.
Sako, K., Suzuki, K., Isoda, M., Yoshikai, S., Senoo, C., Nakajo, N., Ohe, M., & Sagata, N. (2014). Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C. Nature Communications, 5, 3667.
pubmed: 24770399
Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A., & Mayer, T. U. (2005). Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature, 437, 1048–1052.
pubmed: 16127448
Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T., & Maller, J. L. (1990). Cyclin is a component of maturation-promoting factor from Xenopus. Cell, 60, 487–494.
pubmed: 1967981
Kubiak, J. Z., Ciemerych, M. A., Hupalowska, A., Sikora-Polaczek, M., & Polanski, Z. (2008). On the transition from the meiotic cell cycle during early mouse development. International Journal of Developmental Biology, 52, 201–217.
Oh, J. S., Susor, A., & Conti, M. (2011). Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes. Science, 332, 462–465.
pubmed: 21454751 pmcid: 4104668
Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Science, 126, 1081–1085.
pubmed: 23345398
Davydenko, O., Schultz, R. M., & Lampson, M. A. (2013). Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis. Journal of Cell Biology, 202, 221–229.
Tripathi, A., & Chaube, S. K. (2015). Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro. Pharmacological Report, 67, 866–874.
Sullivan, S. G., Chiu, D. T., Errasfa, M., Wang, J. M., Qi, J. S., & Stern, A. (1994). Effects of H2O2 on protein tyrosine phosphatase activity in HER14 cells. Free Radical Biology Medicine, 16, 399–403.
pubmed: 8063203
Fukuda, A., Roudebush, W. E., & Thatcher, S. S. (1992). Influences of in vitro oocyte aging on microfertilization in the mouse with reference to zona hardening. Journal of Assisted Reproduction Genetics, 9, 378–383.
pubmed: 1472818
Yanagida, K., Yazawa, H., Katayose, H., Suzuki, K., Hoshi, K., & Sato, A. (1998). Influence of oocyte preincubation time on fertilization after intracytoplasmic sperm injection. Human Reproduction, 13, 2223–2226.
pubmed: 9756300
Hayes, E., Galea, S., Verkuylen, A., Pera, M., Morrison, J., Lacham-Kaplan, O., & Trounson, A. (2001). Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiological Genomics, 5, 193–204.
pubmed: 11328965
Miao, Y. L., Kikuchi, K., Sun, Q. Y., & Schatten, H. (2009). Oocyte aging: Cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 15, 573–585.
pubmed: 19429634
Osman, E. K., Hong, K. H., & Scott, R. T. (2019). A case of recurrent spontaneous parthenogenetic oocyte activation. Reproductive Biomedicine Online, 39, E7–E8. https://doi.org/10.1016/j.rbmo.2019.07.018 .
doi: 10.1016/j.rbmo.2019.07.018
Ye, Y., Li, N., Yan, X., Wu, R., Zhou, W., Cheng, L., & Li, Y. (2020). Genetic analysis of embryo in a human case of spontaneous oocyte activation: A case report. Gynecology Endocrinology, 36, 294–296.
Sun, X. S., Yue, K. Z., Zhou, J. B., Chen, Q. X., & Tan, J. H. (2002). In vitro spontaneous parthenogenetic activation of golden hamster oocytes. Theriogenology, 57, 845–851.
pubmed: 11991388
Jiang, H., Wang, C., Guan, J., Wang, L., & LI, Z. (2015). Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process. Acta Histochemica, 117, 104–110.
pubmed: 25480399
Abdoon, A. S. S., Kandil, O. M., & Zeng, S. (2020). Intrafollicular spontaneous parthenogenetic development of dromedary camel oocytes. Molecular Reproduction Development, 87, 704–710.
pubmed: 32415813
Zhou, G., Wei, H., Wang, X., Yang, M., Bunch, T. D., Polejaeva, I. A., White, K. L., Wang, Z., & Meng, Q. (2018). Serial culture is critical for in vitro development of parthenogenetic embryos in the golden syrian hamster. Cellular Reprogramming, 20, 187–195.
pubmed: 29688743 pmcid: 6421986
Espejel, S., Eckardt, S., Harbell, J., Roll, G. R., JohnMcLaughlin, K., & Willenbring, H. (2014). Parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells, 32, 1983–1988.
pubmed: 24740448 pmcid: 4376534
Yu, Z., & Han, B. (2016). Advantages and limitations of the parthenogenetic embryonic stem cells in cell therapy. Journal of Reproduction and Contraception, 27, 118–124.
Bos-Mikich, A., Bressan, F.F., Ruggeri, R.R., Watanabe, Y., Flávio, V., Meirelles, F.V. (2016). Parthenogenesis and human assisted reproduction. Stem Cells International ID: 1970843; https://doi.org/10.1155/2016/1970843 .

Auteurs

Karuppanan V Premkumar (KV)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Shilpa Prasad (S)

Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India.

Meenakshi Tiwari (M)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Ashutosh N Pandey (AN)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Anumegha Gupta (A)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Alka Sharma (A)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Pramod K Yadav (PK)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Anil K Yadav (AK)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Devendra K Pandey (DK)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Ajai K Pandey (AK)

Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.

Shail K Chaube (SK)

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. shailchaube@bhu.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH