HFUS Imaging of the Cochlea: A Feasibility Study for Anatomical Identification by Registration with MicroCT.


Journal

Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512

Informations de publication

Date de publication:
May 2021
Historique:
received: 20 04 2020
accepted: 21 10 2020
pubmed: 1 11 2020
medline: 6 11 2021
entrez: 31 10 2020
Statut: ppublish

Résumé

Cochlear implantation consists in electrically stimulating the auditory nerve by inserting an electrode array inside the cochlea, a bony structure of the inner ear. In the absence of any visual feedback, the insertion results in many cases of damages of the internal structures. This paper presents a feasibility study on intraoperative imaging and identification of cochlear structures with high-frequency ultrasound (HFUS). 6 ex-vivo guinea pig cochleae were subjected to both US and microcomputed tomography (µCT) we respectively referred as intraoperative and preoperative modalities. For each sample, registration based on simulating US from the scanner was performed to allow a precise matching between the visible structures. According to two otologists, the procedure led to a target registration error of 0.32 mm ± 0.05. Thanks to referring to a better preoperative anatomical representation, we were able to intraoperatively identify the modiolus, both scalae vestibuli and tympani and deduce the location of the basilar membrane, all of which is of great interest for cochlear implantation. Our main objective is to extend this procedure to the human case and thus provide a new tool for inner ear surgery.

Identifiants

pubmed: 33128180
doi: 10.1007/s10439-020-02671-1
pii: 10.1007/s10439-020-02671-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1308-1317

Références

Bezanson, A., R. Adamson, and J. A. Brown. Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61:33–43, 2014.
doi: 10.1109/TUFFC.2014.6689774
Braun, K., F. Böhnke, and T. Stark. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol. 132:603–613, 2012.
doi: 10.3109/00016489.2011.653670
Brendel, B., S. W. A. Rick, M. Stockheim, and H. Ermert. Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput. Aided Surg. 7:146–155, 2002.
doi: 10.3109/10929080209146025
Brounstein, A., I. Hacihaliloglu, P. Guy, A. Hodgson, and R. Abugharbieh. Towards real-time 3D US to CT bone image registration using phase and curvature feature based GMM matching. Med. Image Comput. Comput. Assist. Interv. 6891:235–242, 2011.
Brown, J. A., Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance. High-frequency ex vivo ultrasound imaging of the auditory system. Ultrasound Med. Biol. 35:1899–1907, 2009.
doi: 10.1016/j.ultrasmedbio.2009.05.021
Buytaert, J., S. Johnson, M. Dierick, W. Salih, and P. Santi. MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J. Histochem. Cytochem. 61:382–395, 2013.
doi: 10.1369/0022155413478613
De Seta, D. Quality of insertion in cochlear implants: a clinical and temporal bone study, Université Pierre et Marie Curie - Paris VI; Università degli studi La Sapienza (Rome), 2016. English.
Fuerst, B., W. Wein, M. Müller, and N. Navab. Automatic ultrasound–MRI registration for neurosurgery using the 2D and 3D LC2 Metric. Med. Image Anal. 18:1312–1319, 2014.
doi: 10.1016/j.media.2014.04.008
Goksu, N., N. Karademir, R. Haziroglu, I. Bayramoglu, Y. Kemaloglu, and N. Akyeldiz. Anatomy of the guinea pig temporal bone. Ann. Otol. Rhinol. Laryngol. 101:699–704, 1992.
doi: 10.1177/000348949210100814
Hacihaliloglu, I., D. R. Wilson, M. Gilbart, M. A. Hunt, and P. Abolmaesumi. Non-iterative partial view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 8:157–168, 2013.
doi: 10.1007/s11548-012-0747-9
Kakigi, A., A. Kakigi, Y. Takubo, N. Egami, A. Kashio, M. Ushio, T. Sakamoto, S. Yamashita, and T. Yamasoba. Evaluation of the internal structure of normal and pathological guinea pig cochleae using optical coherence tomography. Audiol. Neurotol. 18:335–343, 2013.
doi: 10.1159/000354620
Landry, T., G. Earle, J. Brown, and M. Bance. Real-time intracochlear imaging of automated cochlear implant insertions in whole decalcified cadaver cochleas using ultrasound. Cochlear Implants Int. 19:255–267, 2018.
doi: 10.1080/14670100.2018.1460024
Liu, W., F. Atturo, R. Aldaya, P. Santi, S. Cureoglu, S. Obwegeser, R. Glueckert, K. Pfaller, A. Schrott-Fischer, and H. Rask-Andersen. Macromolecular organization and fine structure of the human basilar membrane—relevance for cochlear implantation. Cell Tissue Res. 360:245–262, 2015.
doi: 10.1007/s00441-014-2098-z
Markelj, P., D. Tomaževič, B. Likar, and F. Pernuš. A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16:642–661, 2012.
doi: 10.1016/j.media.2010.03.005
Miracle, A. C., and S. K. Mukherji. Conebeam CT of the head and neck, part 2: clinical applications. Am. J. Neuroradiol. 30:1285–1292, 2009.
doi: 10.3174/ajnr.A1654
Moghari, M. H., and P. Abolmaesumi. Point-based rigid-body registration using an unscented Kalman filter. IEEE Trans. Med. Imaging 26:1708–1728, 2007.
doi: 10.1109/TMI.2007.901984
Nguyen, Y., G. Kazmitcheff, D. De Seta, M. Miroir, E. Ferrary, and O. Sterkers. Definition of metrics to evaluate cochlear array insertion forces performed with forceps, insertion tool, or motorized tool in temporal bone specimens. Biomed. Res. Int. 2014:532570, 2014.
pubmed: 25126565 pmcid: 4122132
Pandey, P., P. Guy, A. J. Hodgson, and R. Abugharbieh. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study. Int. J. Comput. Assist. Radiol. Surg. 13:1515–1524, 2018.
doi: 10.1007/s11548-018-1788-5
Paun, P. D., W. Hans, E. Lankenau, T. Just, D. Behrend, and G. Hüttmann. Optical coherence tomography as an orientation guide in cochlear implant surgery. Acta Otolaryngol. 127:907–913, 2007.
doi: 10.1080/00016480601089408
Powell, M. J. D. The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives. Report DAMTP. Cambridge: University of Cambridge, 2009.
Rasoulian, A., P. Mousavi, M. H. Moghari, P. Foroughi, and P. Abolmaesumi. Group-wise feature-based registration of CT and ultrasound images of spine. Proc. SPIE Int. Soc. Opt. Eng. 7625:76250, 2010.
Shin, K.-J., J.-Y. Lee, J.-N. Kim, J.-Y. Yoo, C. Shin, W.-C. Song, and K.-S. Koh. Quantitative analysis of the cochlea using three-dimensional reconstruction based on microcomputed tomographic images. Anat. Rec. 296:1083–1088, 2013.
doi: 10.1002/ar.22714
Snels, C., J. Inthout, E. Mylanus, W. Huinck, and I. Dhooge. Hearing preservation in cochlear implant surgery: a meta-analysis. Otol Neurotol. 40:145–153, 2019.
doi: 10.1097/MAO.0000000000002083
Torbatian, Z., R. Adamson, R. van Wijhe, R. Pennings, M. Bance, and J. Brown. Imaging the auditory system: a new application of high-frequency ultrasound. In: IEEE International Ultrasonics Symposium, pp. 236–239, 2009.
Wein, W., S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12:577–585, 2008.
doi: 10.1016/j.media.2008.06.006
Wein, W., A. Karamalis, A. Baumgartner, and N. Navab. Automatic bone detection and soft tissue aware ultrasound–CT registration for computer-aided orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 10:971–979, 2015.
doi: 10.1007/s11548-015-1208-z
Winter, S., B. Brendel, I. Pechlivanis, K. Schmieder, and C. Igel. Registration of CT and intraoperative 3-D ultrasound images of the spine using evolutionary and gradient-based methods. IEEE Trans. Evol. Comput. 12:284–296, 2008.
doi: 10.1109/TEVC.2007.907558
Yan, C. X. B., B. Goulet, J. Pelletier, S. J.-S. Chen, D. Tampieri, and D. L. Collins. Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int. J. Comput. Assist. Radiol. Surg. 6:523–537, 2011.
doi: 10.1007/s11548-010-0536-2
Zitová, B., and J. Flusser. Image registration methods: a survey. Image Vision Comput. 21:977–1000, 2003.
doi: 10.1016/S0262-8856(03)00137-9

Auteurs

Lucas Lavenir (L)

LIRMM, University of Montpellier, CNRS, Montpellier, France.

Nabil Zemiti (N)

LIRMM, University of Montpellier, CNRS, Montpellier, France. nabil.zemiti@lirmm.fr.

Mohamed Akkari (M)

Department of ENT and Head and Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France.

Gérard Subsol (G)

LIRMM, University of Montpellier, CNRS, Montpellier, France.

Frédéric Venail (F)

Department of ENT and Head and Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France.
Institute for Neurosciences of Montpellier, INSERM U105, Montpellier, France.

Philippe Poignet (P)

LIRMM, University of Montpellier, CNRS, Montpellier, France.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH