Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.).


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 10 2020
Historique:
received: 28 06 2019
accepted: 28 09 2020
entrez: 16 10 2020
pubmed: 17 10 2020
medline: 11 3 2021
Statut: epublish

Résumé

High temperature during grain filling considerably reduces yield and quality in rice (Oryza sativa L.); however, how high temperature affects seed germination of the next generation is not yet well understood. Here, we report that seeds from plants exposed to high temperature during the grain filling stage germinated significantly later than seeds from unstressed plants. This delay remained even after dormancy release treatments, suggesting that it was not due to primary seed dormancy determined during grain filling. In imbibed embryos of heat-stressed seeds, expression of abscisic acid (ABA) biosynthesis genes (OsNCEDs) was higher than in those of control seeds, whereas that of ABA catabolism genes (OsABA8'OHs) was lower. In the aleurone layer, despite no change in GA signaling as evidenced by no effect of heat stress on OsGAMYB gene expression, the transcripts of α-amylase genes OsAmy1C, OsAmy3B, and OsAmy3E were significantly down-regulated in heat-stressed seeds in comparison with controls. Changes in promoter methylation levels were consistent with transcriptional changes of ABA catabolism-related and α-amylase genes. These data suggest that high temperature during grain filling results in DNA methylation of ABA catabolism-related and α-amylase gene promoters, delaying germination of heat-stressed seeds.

Identifiants

pubmed: 33060675
doi: 10.1038/s41598-020-74281-9
pii: 10.1038/s41598-020-74281-9
pmc: PMC7562956
doi:

Substances chimiques

Gibberellins 0
Abscisic Acid 72S9A8J5GW

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

17378

Références

Plant Cell. 2007 Feb;19(2):433-44
pubmed: 17329563
Plant Physiol. 2015 Nov;169(3):2152-65
pubmed: 26373662
J Exp Bot. 2004 Jan;55(394):111-8
pubmed: 14676289
Plant Cell. 1997 Jul;9(7):1055-1066
pubmed: 12237375
Plant Physiol. 2002 Apr;128(4):1264-70
pubmed: 11950975
Plant Sci. 2013 Jul;208:1-9
pubmed: 23683923
Plant Cell. 2006 Sep;18(9):2326-40
pubmed: 16905658
Plant Physiol. 2003 Oct;133(2):850-63
pubmed: 14500792
PLoS One. 2015 Nov 18;10(11):e0143173
pubmed: 26579718
Biochemistry. 1979 Nov 27;18(24):5294-9
pubmed: 518835
Plant J. 2006 Mar;45(6):942-54
pubmed: 16507085
Plant Biol (Stuttg). 2015 Nov;17(6):1156-64
pubmed: 26205956
J Exp Bot. 2010 Jun;61(11):2979-90
pubmed: 20460363
Curr Opin Biotechnol. 2005 Apr;16(2):123-32
pubmed: 15831376
Front Plant Sci. 2015 Apr 10;6:213
pubmed: 25914702
Plant Sci. 2016 Jul;248:28-36
pubmed: 27181944
Plants (Basel). 2020 Apr 09;9(4):
pubmed: 32283717
J Plant Physiol. 2017 Sep;216:52-57
pubmed: 28575747
Plant Cell. 2012 Jul;24(7):2826-38
pubmed: 22829147
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):9971-5
pubmed: 15226500
J Integr Plant Biol. 2008 Oct;50(10):1187-95
pubmed: 19017106
Front Plant Sci. 2018 Dec 05;9:1768
pubmed: 30568666
Plant Cell Physiol. 2009 Mar;50(3):644-51
pubmed: 19208695
Ann Bot. 2002 Oct;90(4):469-76
pubmed: 12324270
Curr Opin Plant Biol. 2005 Apr;8(2):183-7
pubmed: 15752999
Curr Opin Genet Dev. 2007 Dec;17(6):480-5
pubmed: 17962010
Plant Biotechnol J. 2012 Dec;10(9):1110-7
pubmed: 22967050
Plant J. 1999 Jan;17(1):1-9
pubmed: 10069063
Plant Cell. 2004 Jan;16(1):33-44
pubmed: 14688295
Plant Methods. 2014 Jun 14;10:18
pubmed: 24955108
Elife. 2019 Mar 26;8:
pubmed: 30910007
J Exp Bot. 2014 Dec;65(22):6603-15
pubmed: 25240065
Plant Cell. 2013 Mar;25(3):884-900
pubmed: 23503626
Plant J. 2007 Jul;51(1):60-78
pubmed: 17461781
Plant Physiol. 2007 May;144(1):258-77
pubmed: 17384160
Nat Commun. 2016 Nov 11;7:13412
pubmed: 27834370
PLoS One. 2018 Jan 2;13(1):e0190299
pubmed: 29293569
Curr Opin Plant Biol. 2002 Feb;5(1):33-6
pubmed: 11788305
Plant J. 2013 Aug;75(3):403-16
pubmed: 23581288

Auteurs

Chetphilin Suriyasak (C)

Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.

Yui Oyama (Y)

Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.

Toshiaki Ishida (T)

Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Kiyoshi Mashiguchi (K)

Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Shinjiro Yamaguchi (S)

Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Norimitsu Hamaoka (N)

Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.

Mari Iwaya-Inoue (M)

Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.

Yushi Ishibashi (Y)

Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan. yushi@agr.kyushu-u.ac.jp.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH