Increased circulating endothelial progenitor cells (EPCs) in prepubertal children born prematurely: a possible link between prematurity and cardiovascular risk.
Antigens, CD34
/ blood
Brachial Artery
/ physiopathology
Carotid Arteries
/ physiopathology
Case-Control Studies
Child
Endothelial Progenitor Cells
/ cytology
Female
Heart Disease Risk Factors
Humans
Leukocyte Common Antigens
/ blood
Male
Premature Birth
/ physiopathology
Vascular Endothelial Growth Factor Receptor-2
/ blood
Waist-Hip Ratio
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
08
04
2020
accepted:
22
09
2020
revised:
17
08
2020
pubmed:
11
10
2020
medline:
9
2
2022
entrez:
10
10
2020
Statut:
ppublish
Résumé
Endothelial progenitor cells (EPCs) ensure vascular integrity and neovascularization. No studies have investigated EPCs in preterm-born children beyond infancy. One hundred and thirty-six prepubertal children were enrolled: 63 preterm and 73 born at term (controls). Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were measured in preterm-born children compared to controls. Body mass index (BMI), waist-to-hip ratio (WHR), neck circumference, systolic and diastolic blood pressure (SBP and DBP, respectively), fasting glucose, insulin, lipid profile, common carotid and abdominal aortic intima-media thickness (cIMT and aIMT, respectively), endothelium-dependent brachial artery flow-mediated dilation (FMD), and echocardiographic parameters were also assessed. Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were significantly higher in preterm-born children compared to controls (p < 0.001 and p < 0.001, respectively). In total study population and in the preterm-born group, EPCs were significantly lower in children born to mothers with gestational diabetes compared to non-diabetic mothers. Prematurity was associated with higher WHR, neck circumference, SBP, DBP, cIMT, aIMT, mean pressure, and velocity of pulmonary artery; the peak velocity of the brachial artery was significantly lower in children born prematurely. In multiple regression analysis, preterm birth and maternal gestational diabetes were recognized as independent predictors of EPCs. Circulating EPCs were increased in prepubertal preterm-born children in comparison with peers born full-term. Maternal gestational diabetes was associated with a decrease in EPCs. Mounting evidence supports the adverse effect of prematurity on cardiovascular health. However, the underlying mechanisms that could lead to endothelial dysfunction in preterm-born individuals are not fully understood. Endothelial progenitor cells (EPCs) ensure vascular integrity, normal endothelial function and neovascularization. No studies have investigated the EPCs counts in peripheral blood beyond infancy in children born prematurely. Circulating EPCs were significantly higher in preterm-born prepubertal children compared to controls, thus indicating that prematurity is possibly associated with endothelial damage. In total study population and in the preterm-born group, maternal gestational diabetes was associated with decreased EPCs concentrations.
Sections du résumé
BACKGROUND
Endothelial progenitor cells (EPCs) ensure vascular integrity and neovascularization. No studies have investigated EPCs in preterm-born children beyond infancy.
METHODS
One hundred and thirty-six prepubertal children were enrolled: 63 preterm and 73 born at term (controls). Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were measured in preterm-born children compared to controls. Body mass index (BMI), waist-to-hip ratio (WHR), neck circumference, systolic and diastolic blood pressure (SBP and DBP, respectively), fasting glucose, insulin, lipid profile, common carotid and abdominal aortic intima-media thickness (cIMT and aIMT, respectively), endothelium-dependent brachial artery flow-mediated dilation (FMD), and echocardiographic parameters were also assessed.
RESULTS
Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were significantly higher in preterm-born children compared to controls (p < 0.001 and p < 0.001, respectively). In total study population and in the preterm-born group, EPCs were significantly lower in children born to mothers with gestational diabetes compared to non-diabetic mothers. Prematurity was associated with higher WHR, neck circumference, SBP, DBP, cIMT, aIMT, mean pressure, and velocity of pulmonary artery; the peak velocity of the brachial artery was significantly lower in children born prematurely. In multiple regression analysis, preterm birth and maternal gestational diabetes were recognized as independent predictors of EPCs.
CONCLUSIONS
Circulating EPCs were increased in prepubertal preterm-born children in comparison with peers born full-term. Maternal gestational diabetes was associated with a decrease in EPCs.
IMPACT
Mounting evidence supports the adverse effect of prematurity on cardiovascular health. However, the underlying mechanisms that could lead to endothelial dysfunction in preterm-born individuals are not fully understood. Endothelial progenitor cells (EPCs) ensure vascular integrity, normal endothelial function and neovascularization. No studies have investigated the EPCs counts in peripheral blood beyond infancy in children born prematurely. Circulating EPCs were significantly higher in preterm-born prepubertal children compared to controls, thus indicating that prematurity is possibly associated with endothelial damage. In total study population and in the preterm-born group, maternal gestational diabetes was associated with decreased EPCs concentrations.
Identifiants
pubmed: 33038874
doi: 10.1038/s41390-020-01190-y
pii: 10.1038/s41390-020-01190-y
doi:
Substances chimiques
Antigens, CD34
0
Vascular Endothelial Growth Factor Receptor-2
EC 2.7.10.1
Leukocyte Common Antigens
EC 3.1.3.48
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
156-165Informations de copyright
© 2020. International Pediatric Research Foundation, Inc.
Références
Bavineni, M. et al. Mechanisms linking preterm birth to onset of cardiovascular disease later in adulthood. Eur. Heart J. 40, 1107–1112 (2019).
pubmed: 30753448
pmcid: 6451766
doi: 10.1093/eurheartj/ehz025
Bassareo, P. P., Namana, V., Fanos, V. & Mercuro, G. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 70, 1943–1944 (2017).
pubmed: 28982511
doi: 10.1016/j.jacc.2017.06.074
pmcid: 28982511
Carr, H., Cnattingius, S., Granath, F., Ludvigsson, J. F. & Edstedt Bonamy, A. K. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 69, 2634–2642 (2017).
pubmed: 28545637
doi: 10.1016/j.jacc.2017.03.572
pmcid: 28545637
Crump, C. et al. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2019.1327 (2019).
Heindel, J. J. et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology 156, 3416–3421 (2015).
pubmed: 26241070
pmcid: 4588819
doi: 10.1210/en.2015-1394
Lewandowski, A. J. et al. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life. Hypertension 65, 607–614 (2015).
pubmed: 25534704
doi: 10.1161/HYPERTENSIONAHA.114.04662
pmcid: 25534704
de Jong, F., Monuteaux, M. C., van Elburg, R. M., Gillman, M. W. & Belfort, M. B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59, 226–234 (2012).
pubmed: 22158643
doi: 10.1161/HYPERTENSIONAHA.111.181784
pmcid: 22158643
Markopoulou, P., Papanikolaou, E., Analytis, A., Zoumakis, E. & Siahanidou, T. Preterm birth as a risk factor for metabolic syndrome and cardiovascular disease in adult life: a systematic review and meta-Analysis. J. Pediatr. 210, 69–80 (2019).
pubmed: 30992219
doi: 10.1016/j.jpeds.2019.02.041
pmcid: 30992219
Kajantie, E. et al. Insulin sensitivity and secretory response in adults born preterm: the Helsinki Study of very low birth weight adults. J. Clin. Endocrinol. Metab. 100, 244–250 (2015).
pubmed: 25303493
doi: 10.1210/jc.2014-3184
pmcid: 25303493
Sipola-Leppänen, M. et al. Cardiometabolic risk factors in young adults who were born preterm. Am. J. Epidemiol. 181, 861–873 (2015).
pubmed: 25947956
pmcid: 4445394
doi: 10.1093/aje/kwu443
Hovi, P. et al. Lipoprotein subclass profiles in young adults born preterm at very low birth weight. Lipids Health Dis. 12, 57 (2013).
pubmed: 23631373
pmcid: 3661387
doi: 10.1186/1476-511X-12-57
Breukhoven, P. E., Kerkhof, G. F., Willemsen, R. H. & Hokken-Koelega, A. C. Fat mass and lipid profile in young adults born preterm. J. Clin. Endocrinol. Metab. 97, 1294–1302 (2012).
pubmed: 22399507
doi: 10.1210/jc.2011-2621
pmcid: 22399507
Thomas, E. L. et al. Aberrant adiposity and ectopic lipid deposition characterize the adult phenotype of the preterm infant. Pediatr. Res. 70, 507–512 (2011).
pubmed: 21772225
doi: 10.1203/PDR.0b013e31822d7860
pmcid: 21772225
Lewandowski, A. J. et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127, 197–206 (2013).
pubmed: 23224059
doi: 10.1161/CIRCULATIONAHA.112.126920
pmcid: 23224059
Lewandowski, A. J. et al. Right ventricular systolic dysfunction in young adults born preterm. Circulation 128, 713–720 (2013).
pubmed: 23940387
doi: 10.1161/CIRCULATIONAHA.113.002583
pmcid: 23940387
Lewandowski, A. J. The preterm heart: a unique cardiomyopathy? Pediatr. Res. 85, 738–739 (2019).
pubmed: 30661080
pmcid: 6499724
doi: 10.1038/s41390-019-0301-3
Bassareo, P. P. et al. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk? J. Matern. Fetal Neonatal Med. 23(Suppl 3), 121–124 (2010).
Cheung, Y. F., Wong, K. Y., Lam, B. C. & Tsoi, N. S. Relation of arterial stiffness with gestational age and birth weight. Arch. Dis. Child. 89, 217–221 (2004).
pubmed: 14977693
pmcid: 1719813
doi: 10.1136/adc.2003.025999
Lazdam, M. et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 56, 159–165 (2010).
pubmed: 20479334
doi: 10.1161/HYPERTENSIONAHA.110.150235
pmcid: 20479334
Hovi, P. et al. Intima-media thickness and flow-mediated dilatation in the Helsinki study of very low birth weight adults. Pediatrics 127, 304–311 (2011).
doi: 10.1542/peds.2010-2199
Shimizu, T. et al. Abdominal aortic intima-media thickness in preschool children born preterm. Pediatr. Cardiol. 35, 121–125 (2014).
pubmed: 23843103
doi: 10.1007/s00246-013-0750-0
pmcid: 23843103
Lee, H., Dichtl, S., Mormanova, Z., Dalla Pozza, R. & Genzel-Boroviczeny, O. In adolescence, extreme prematurity is associated with significant changes in the microvasculature, elevated blood pressure and increased carotid intima-media thickness. Arch. Dis. Child. 99, 907–911 (2014).
pubmed: 24879769
doi: 10.1136/archdischild-2013-304074
pmcid: 24879769
Kerkhof, G. F., Breukhoven, P. E., Leunissen, R. W., Willemsen, R. H. & Hokken-Koelega, A. C. Does preterm birth influence cardiovascular risk in early adulthood? J. Pediatr. 161, 390–396 (2012).
pubmed: 22578582
doi: 10.1016/j.jpeds.2012.03.048
pmcid: 22578582
McEniery, C. M. et al. Cardiovascular consequences of extreme prematurity: the EPICure study. J. Hypertens. 29, 1367–1373 (2011).
pubmed: 21602710
doi: 10.1097/HJH.0b013e328347e333
pmcid: 21602710
Bonamy, A. K., Martin, H., Jörneskog, G. & Norman, M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J. Intern. Med. 262, 635–642 (2007).
pubmed: 17986202
doi: 10.1111/j.1365-2796.2007.01868.x
pmcid: 17986202
Edwards, M. O. et al. Higher systolic blood pressure with normal vascular function measurements in preterm-born children. Acta Paediatr. 103, 904–912 (2014).
pubmed: 24861771
doi: 10.1111/apa.12699
pmcid: 24861771
Martins, S. & Quelhas-Santos, J. Circulating endothelial progenitor cells: a review of definition, characterization and identification. Res. Rev. Res. J. Biol. 4, 42–49 (2016).
Burger, D. & Touyz, R. M. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens. 6, 85–99 (2012).
pubmed: 22321962
doi: 10.1016/j.jash.2011.11.003
pmcid: 22321962
Bui, K. C. et al. Circulating hematopoietic and endothelial progenitor cells in newborn infants: effects of gestational age, postnatal age and clinical stress in the first 3 weeks of life. Early Hum. Dev. 89, 411–418 (2013).
pubmed: 23312395
pmcid: 3633695
doi: 10.1016/j.earlhumdev.2012.12.006
Bruyndonckx, L. et al. Endothelial progenitor cells and endothelial microparticles are independent predictors of endothelial function. J. Pediatr. 165, 300–305 (2014).
pubmed: 24840759
doi: 10.1016/j.jpeds.2014.04.015
pmcid: 24840759
Schmidt-Lucke, C. et al. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS ONE 5, e13790 (2010).
pubmed: 21072182
pmcid: 2972200
doi: 10.1371/journal.pone.0013790
Massa, M. et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105, 199–206 (2005).
pubmed: 15345590
doi: 10.1182/blood-2004-05-1831
pmcid: 15345590
Shintani, S. et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103, 2776–2779 (2001).
pubmed: 11401930
doi: 10.1161/hc2301.092122
pmcid: 11401930
Chu, K. et al. Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke 39, 1441–1447 (2008).
pubmed: 18356550
doi: 10.1161/STROKEAHA.107.499236
pmcid: 18356550
Yip, H. K. et al. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke 39, 69–74 (2008).
pubmed: 18063830
doi: 10.1161/STROKEAHA.107.489401
pmcid: 18063830
Zhang, H. et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105, 3286–3294 (2005).
pubmed: 15618473
doi: 10.1182/blood-2004-06-2101
pmcid: 15618473
Zahran, A. M., Aly, S. S., Altayeb, H. A. & Ali, A. M. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol. Lett. 12, 1965–1970 (2016).
pubmed: 27602121
pmcid: 4998591
doi: 10.3892/ol.2016.4859
Rhone, P. et al. Increased number of endothelial progenitors in peripheral blood as a possible early marker of tumour growth in post-menopausal breast cancer patients. J. Physiol. Pharmacol. 68, 139–148 (2017).
pubmed: 28456778
pmcid: 28456778
Yu, P. et al. Identification and significance of mobilized endothelial progenitor cells in tumor neovascularization of renal cell carcinoma. Tumour Biol. 35, 9331–9341 (2014).
pubmed: 24943683
doi: 10.1007/s13277-014-2205-5
pmcid: 24943683
Bertagnolli, M., Nuyt, A. M., Thébaud, B. & Luu, T. M. Endothelial progenitor cells as prognostic markers of preterm birth-associated complications. Stem Cells Transl. Med. 6, 7–13 (2017).
pubmed: 28170188
doi: 10.5966/sctm.2016-0085
pmcid: 28170188
Baker, C. D. et al. Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur. Respir. J. 40, 1516–1522 (2012).
pubmed: 22496315
pmcid: 5596882
doi: 10.1183/09031936.00017312
Blue, E. K. et al. Gestational diabetes induces alterations in the function of neonatal endothelial colony-forming cells. Pediatr. Res. 75, 266–272 (2014).
pubmed: 24232636
doi: 10.1038/pr.2013.224
pmcid: 24232636
Muñoz-Hernandez, R. et al. Decreased level of cord blood circulating endothelial colony-forming cells in preeclampsia. Hypertension 64, 165–171 (2014).
pubmed: 24752434
doi: 10.1161/HYPERTENSIONAHA.113.03058
pmcid: 24752434
Bertagnolli, M. et al. Endothelial colony-forming cells in young adults born preterm: a novel link between neonatal complications and adult risks for cardiovascular disease. J. Am. Heart Assoc. 7, e009720 (2018).
pubmed: 29987124
pmcid: 6064846
doi: 10.1161/JAHA.118.009720
Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 13, 59 (2013).
pubmed: 23601190
pmcid: 3637477
doi: 10.1186/1471-2431-13-59
Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: gestational diabetes mellitus. Obstet. Gynecol. 131, e49–e64 (2018).
doi: 10.1097/AOG.0000000000002501
ACOG Practice Bulletin No. 202: gestational hypertension and preeclampsia. Obstet. Gynecol. 133, e1–e25 (2019).
Higgins, R. D. et al. Bronchopulmonary dysplasia: executive summary of a workshop. J. Pediatr. 197, 300–308 (2018).
pubmed: 29551318
pmcid: 5970962
doi: 10.1016/j.jpeds.2018.01.043
Yashoda, H. T., Swetha, B. & Goutham, A. S. Neck circumference measurement as a screening tool for. Int. J. Contemp. Pediatr. 4, 426–430 (2017).
doi: 10.18203/2349-3291.ijcp20170538
Tanner, J. M. & Whitehouse, R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 51, 170–179 (1976).
pubmed: 952550
pmcid: 1545912
doi: 10.1136/adc.51.3.170
Faienza, M. F. et al. Vascular function and myocardial performance indices in children born small for gestational age. Circ. J. 80, 958–963 (2016).
pubmed: 26861187
doi: 10.1253/circj.CJ-15-1038
pmcid: 26861187
Flynn, T. J. et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140, e20171904 (2017).
pubmed: 28827377
doi: 10.1542/peds.2017-1904
pmcid: 28827377
Cutfield, W. S., Jefferies, C. A., Jackson, W. E., Robinson, E. M. & Hofman, P. L. Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr. Diabetes 4, 119–125 (2003).
pubmed: 14655269
doi: 10.1034/j.1399-5448.2003.t01-1-00022.x
pmcid: 14655269
Dalla Pozza, R. et al. Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis 238, 380–387 (2015).
pubmed: 25555270
doi: 10.1016/j.atherosclerosis.2014.12.029
pmcid: 25555270
Järvisalo, M. J. et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 104, 2943–2947 (2001).
pubmed: 11739310
doi: 10.1161/hc4901.100522
pmcid: 11739310
Bots, M. L., Hoes, A. W., Koudstaal, P. J., Hofman, A. & Grobbee, D. E. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96, 1432–1437 (1997).
pubmed: 9315528
doi: 10.1161/01.CIR.96.5.1432
pmcid: 9315528
Corretti, M. C. et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 39, 257–265 (2002).
pubmed: 11788217
doi: 10.1016/S0735-1097(01)01746-6
pmcid: 11788217
Tissot, C., Singh, Y. & Sekarski, N. Echocardiographic evaluation of ventricular function-for the neonatologist and pediatric intensivist. Front. Pediatr. 6, 79 (2018).
pubmed: 29670871
pmcid: 5893826
doi: 10.3389/fped.2018.00079
Lai, W. W. et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 19, 1413–1430 (2006).
pubmed: 17138024
doi: 10.1016/j.echo.2006.09.001
pmcid: 17138024
Foster, B. J. et al. A novel method of expressing left ventricular mass relative to body size in children. Circulation 117, 2769–2775 (2008).
pubmed: 18490525
doi: 10.1161/CIRCULATIONAHA.107.741157
pmcid: 18490525
Koo, T. K. & Li, M. Y. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).
pubmed: 27330520
pmcid: 4913118
doi: 10.1016/j.jcm.2016.02.012
Paviotti, G. et al. Endothelial progenitor cells, bronchopulmonary dysplasia and other short-term outcomes of extremely preterm birth. Early Hum. Dev. 87, 461–465 (2011).
pubmed: 21511414
doi: 10.1016/j.earlhumdev.2011.03.011
pmcid: 21511414
Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).
pubmed: 10648408
pmcid: 10648408
doi: 10.1182/blood.V95.3.952.003k27_952_958
Fadini, G. P. & Avogaro, A. Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovasc. Res. 87, 12–21 (2010).
pubmed: 20427336
doi: 10.1093/cvr/cvq119
pmcid: 20427336
Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).
pubmed: 10436164
doi: 10.1161/01.RES.85.3.221
pmcid: 10436164
Güven, H., Shepherd, R. M., Bach, R. G., Capoccia, B. J. & Link, D. C. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J. Am. Coll. Cardiol. 48, 1579–1587 (2006).
pubmed: 17045891
doi: 10.1016/j.jacc.2006.04.101
pmcid: 17045891
Grisar, J. C., Haddad, F., Gomari, F. A. & Wu, J. C. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark. Med. 5, 731–744 (2011).
pubmed: 22103609
doi: 10.2217/bmm.11.92
pmcid: 22103609
Tepper, O. M. et al. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106, 2781–2786 (2002).
pubmed: 12451003
doi: 10.1161/01.CIR.0000039526.42991.93
pmcid: 12451003
Umemura, T. et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am. J. Hypertens. 21, 1203–1209 (2008).
pubmed: 18787520
doi: 10.1038/ajh.2008.278
pmcid: 18787520
Lorenzen, J. et al. Endothelial progenitor cells and cardiovascular events in patients with chronic kidney disease: a prospective follow-up study. PLoS ONE 5, e11477 (2010).
pubmed: 20628606
pmcid: 2900210
doi: 10.1371/journal.pone.0011477
Valgimigli, M. et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110, 1209–1212 (2004).
pubmed: 15249502
doi: 10.1161/01.CIR.0000136813.89036.21
pmcid: 15249502
Grisar, J. et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111, 204–211 (2005).
pubmed: 15642766
doi: 10.1161/01.CIR.0000151875.21836.AE
pmcid: 15642766
Rüger, B. et al. Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 50, 2157–2166 (2004).
pubmed: 15248213
doi: 10.1002/art.20506
pmcid: 15248213
Ebner, P. et al. Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology 49, 63–72 (2010).
pubmed: 19995856
doi: 10.1093/rheumatology/kep335
pmcid: 19995856
Kuwana, M., Okazaki, Y., Yasuoka, H., Kawakami, Y. & Ikeda, Y. Defective vasculogenesis in systemic sclerosis. Lancet 364, 603–610 (2004).
pubmed: 15313361
doi: 10.1016/S0140-6736(04)16853-0
pmcid: 15313361
Allanore, Y. et al. Levels of circulating endothelial progenitor cells in systemic sclerosis. Clin. Exp. Rheumatol. 25, 60–66 (2007).
pubmed: 17417992
pmcid: 17417992
Hong, Y., Eleftheriou, D., Klein, N. J. & Brogan, P. A. Impaired function of endothelial progenitor cells in children with primary systemic vasculitis. Arthritis Res. Ther. 17, 292 (2015).
pubmed: 26475131
pmcid: 4609146
doi: 10.1186/s13075-015-0810-3
Adly, A. A. et al. Vascular dysfunction in patients with young β-thalassemia: relation to cardiovascular complications and subclinical atherosclerosis. Clin. Appl. Thromb. Hemost. 21, 733–744 (2015).
pubmed: 24989711
doi: 10.1177/1076029614541515
pmcid: 24989711
Głowińska-Olszewska, B. et al. Relationship between circulating endothelial progenitor cells and endothelial dysfunction in children with type 1 diabetes: a novel paradigm of early atherosclerosis in high-risk young patients. Eur. J. Endocrinol. 168, 153–161 (2013).
pubmed: 23111589
doi: 10.1530/EJE-12-0857
pmcid: 23111589
Jie, K. E. et al. Reduced endothelial progenitor cells in children with hemodialysis but not predialysis chronic kidney disease. Pediatrics 126, e990–e993 (2010).
pubmed: 20819900
doi: 10.1542/peds.2009-3346
pmcid: 20819900
Robb, A. O., Mills, N. L., Newby, D. E. & Denison, F. C. Endothelial progenitor cells in pregnancy. Reproduction 133, 1–9 (2007).
pubmed: 17244727
doi: 10.1530/REP-06-0219
pmcid: 17244727
Acosta, J. C. et al. Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets. Am. J. Obstet. Gynecol. 204, 254 (2011).
pubmed: 21167470
doi: 10.1016/j.ajog.2010.10.913
pmcid: 21167470
Penno, G. et al. Circulating endothelial progenitor cells in women with gestational alterations of glucose tolerance. Diab. Vasc. Dis. Res. 8, 202–210 (2011).
pubmed: 21653675
doi: 10.1177/1479164111408938
pmcid: 21653675
Buemi, M. et al. Concentration of circulating endothelial progenitor cells (EPC) in normal pregnancy and in pregnant women with diabetes and hypertension. Am. J. Obstet. Gynecol. 196, 68 (2007).
pubmed: 17240239
doi: 10.1016/j.ajog.2006.08.032
pmcid: 17240239
Mordwinkin, N. M. et al. Alteration of endothelial function markers in women with gestational diabetes and their fetuses. J. Matern. Fetal Neonatal Med. 26, 507–512 (2013).
pubmed: 23046386
doi: 10.3109/14767058.2012.736564
pmcid: 23046386
Visentin, S. et al. Early origins of adult disease: low birth weight and vascular remodelling. Atherosclerosis 237, 391–399 (2014).
pubmed: 25463063
doi: 10.1016/j.atherosclerosis.2014.09.027
pmcid: 25463063
Paudel, K. R., Panth, N. & Kim, D. W. Circulating endothelial microparticles: A key hallmark of atherosclerosis progression. Science 2016, 8514056 (2016).
Skilton, M. R. et al. Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the Cardiovascular Risk in Young Finns Study. Arterioscler. Thromb. Vasc. Biol. 31, 2975–2981 (2011).
pubmed: 21940950
doi: 10.1161/ATVBAHA.111.234757
pmcid: 21940950
Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M. & Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115, 459–467 (2007).
pubmed: 17242284
doi: 10.1161/CIRCULATIONAHA.106.628875
pmcid: 17242284
Lim, S. M. et al. Association between blood pressure and carotid intima-media thickness. J. Pediatr. 154, 667–671 (2009).
pubmed: 19101684
doi: 10.1016/j.jpeds.2008.10.047
pmcid: 19101684
Páll, D. et al. Increased common carotid artery intima media thickness in adolescent hypertension: results from the Debrecen Hypertension study. Cerebrovasc. Dis. 15, 167–172 (2003).
pubmed: 12646774
doi: 10.1159/000068834
pmcid: 12646774
Dalla Pozza, R. et al. Age of onset of type 1 diabetes in children and carotid intima medial thickness. J. Clin. Endocrinol. Metab. 92, 2053–2057 (2007).
pubmed: 17374703
doi: 10.1210/jc.2006-2868
pmcid: 17374703
Järvisalo, M. J. et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes 51, 493–498 (2002).
pubmed: 11812760
doi: 10.2337/diabetes.51.2.493
pmcid: 11812760
Dawson, J. D., Sonka, M., Blecha, M. B., Lin, W. & Davis, P. H. Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: the Muscatine Offspring Study. J. Am. Coll. Cardiol. 53, 2273–2279 (2009).
pubmed: 19520251
pmcid: 2747309
doi: 10.1016/j.jacc.2009.03.026
McCloskey, K. et al. Reproducibility of aortic intima-media thickness in infants using edge-detection software and manual caliper measurements. Cardiovasc. Ultrasound 12, 18 (2014).
pubmed: 24894574
pmcid: 4061507
doi: 10.1186/1476-7120-12-18
Chironi, G. et al. Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis 191, 115–120 (2007).
pubmed: 16620831
doi: 10.1016/j.atherosclerosis.2006.02.041
pmcid: 16620831
Bogdanski, P. et al. Plasma total homocysteine is a determinant of carotid intima-media thickness and circulating endothelial progenitor cells in patients with newly diagnosed hypertension. Clin. Chem. Lab. Med. 50, 1107–1113 (2012).
pubmed: 22706254
doi: 10.1515/cclm-2011-0856
pmcid: 22706254
Palombo, C. et al. Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc. Diabetol. 8, 88 (2011).
doi: 10.1186/1475-2840-10-88
Bitterli, L. et al. Endothelial progenitor cells as a biological marker of peripheral artery disease. Vasc. Med. 21, 3–11 (2016).
pubmed: 26511986
doi: 10.1177/1358863X15611225
pmcid: 26511986
Evensen, K. A. et al. Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. Early Hum. Dev. 85, 239–245 (2009).
pubmed: 19013031
doi: 10.1016/j.earlhumdev.2008.10.008
pmcid: 19013031
Seals, D. R., Jablonski, K. L. & Donato, A. J. Aging and vascular endothelial function in humans. Clin. Sci. 120, 357–375 (2011).
doi: 10.1042/CS20100476
Järhult, S. J., Sundström, J. & Lind, L. Brachial artery hyperaemic blood flow velocity and left ventricular geometry. J. Hum. Hypertens. 26, 242–246 (2012).
pubmed: 21412263
doi: 10.1038/jhh.2011.21
pmcid: 21412263
Järhult, S. J., Hall, J. & Lind, L. Hyperaemic blood-flow velocities in systole and diastole relate to coronary risk in divergent ways. Clin. Physiol. Funct. Imaging 28, 189–195 (2008).
pubmed: 18355345
doi: 10.1111/j.1475-097X.2008.00797.x
pmcid: 18355345
Burchert, H. & Lewandowski, A. J. Preterm birth is a novel, independent risk factor for altered cardiac remodeling and early heart failure: is it time for a new cardiomyopathy? Curr. Treat. Options Cardiovasc. Med. 21, 8 (2019).
pubmed: 30762137
doi: 10.1007/s11936-019-0712-9
pmcid: 30762137
Inomata, S. et al. Effect of preterm birth on growth and cardiovascular disease risk at school age. Pediatr. Int. 57, 1126–1130 (2015).
pubmed: 26083964
doi: 10.1111/ped.12732
pmcid: 26083964
Chen, J. Z. et al. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin. Sci. 107, 273–280 (2004).
doi: 10.1042/CS20030389
Werner, N. et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353, 999–1007 (2005).
pubmed: 16148285
doi: 10.1056/NEJMoa043814
pmcid: 16148285
Bassareo, P. P., Fanos, V. & Mercuro, G. Response to ‘In adolescence, extreme prematurity is associated with significant changes in the microvasculature, elevated blood pressure and increased carotid intima-media thickness’. Arch. Dis. Child. 100, 508–509 (2015).
pubmed: 25653223
doi: 10.1136/archdischild-2014-308155
pmcid: 25653223