Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 10 2020
01 10 2020
Historique:
received:
09
07
2020
accepted:
15
09
2020
entrez:
2
10
2020
pubmed:
3
10
2020
medline:
2
1
2021
Statut:
epublish
Résumé
Although, the Pacific crabapple, Malus fusca, is a hardy and disease resistant species, studies relating to the genetics of its unique traits are very limited partly due to the lack of a genetic map of this interesting wild apple. An accession of M. fusca (MAL0045) of Julius Kühn-Institut collection in Germany is highly resistant to fire blight disease, incited by different strains of the causative pathogen-Erwinia amylovora. This is the most destructive bacterial disease of Malus of which most of the domesticated apples (Malus domestica) are susceptible. Using a scarcely dense genetic map derived from a population of 134 individuals of MAL0045 × 'Idared', the locus (Mfu10) controlling fire blight resistance mapped on linkage group 10 (LG10) and explained up to 66% of the phenotypic variance with different strains. Although the development of robust and tightly linked molecular markers on LG10 through chromosome walking approach led to the identification of a major candidate gene, any minor effect locus remained elusive possibly due to the lack of marker density of the entire genetic map. Therefore, we have developed a dense genetic map of M. fusca using tunable genotyping-by-sequencing (tGBS) approach. Of thousands of de novo SNPs identified, 2677 were informative in M. fusca and 90.5% of these successfully mapped. In addition, integration of SNP data and microsatellite (SSR) data resulted in a final map comprising 17 LGs with 613 loci spanning 1081.35 centi Morgan (cM). This map will serve as a template for mapping using different strains of the pathogen.
Identifiants
pubmed: 33005026
doi: 10.1038/s41598-020-73393-6
pii: 10.1038/s41598-020-73393-6
pmc: PMC7529804
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16358Références
Viereck, L. A. & Little Elbert, L. J. Alaska Trees and Shrubs 205–207 (University of Alaska Press, Fairbanks, 2007).
Qian, G.-Z., Liu, L.-F. & Tang, G.-G. A new selection of Malus (Rosaceae) from China. Ann. Bot. Fenn. 1, 68–73 (2006).
Robinson, J., Harris, S. & Juniper, B. Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst. Evol. 226, 35–58 (2001).
Fiala, J. L. Flowering Crabapples: The Genus Malus (Timber Press Inc, Portland, 1994).
Vavilov, N. I. Studies on the origin of cultivated plants. Bull. Appl. Bot 16, 1–10 (1926).
Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Oxford University Press, Oxford, 2000).
Cornille, A., Giraud, T., Smulders, M. J., Roldán-Ruiz, I. & Gladieux, P. The domestication and evolutionary ecology of apples. Trends Genet. 30, 57–65 (2014).
pubmed: 24290193
pmcid: 24290193
Hanke, M.-V., Flachowsky, H., Peil, A. & Emeriewen, O. F. in Biotechnology of Fruit and Nut Crops Biotechnology in Agricultural Series (eds R. Litz, F. Pliego-Alfaro, & J. I. Hormaza) 440–473 (CAB International, Cambridge, 2020).
Höfer, M. & Meister, A. Genome size variation in Malus species. Journal of Botany https://doi.org/10.1155/2010/480873 (2010).
doi: 10.1155/2010/480873
Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49, 1099–1106 (2017).
pubmed: 28581499
pmcid: 28581499
Velasco, R. et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 42, 833–839. https://doi.org/10.1038/ng.654 (2010).
doi: 10.1038/ng.654
pubmed: 20802477
pmcid: 20802477
Conner, P. J., Brown, S. K. & Weeden, N. F. Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Am. Soc. Hortic. Sci. 122, 350–359 (1997).
Hemmat, M., Weedon, N., Manganaris, A. & Lawson, D. Molecular marker linkage map for apple. J. Hered. 85, 4–11 (1994).
pubmed: 7907101
pmcid: 7907101
Maliepaard, C. et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97, 60–73 (1998).
Celton, J. M., Tustin, D. S., Chagne, D. & Gardiner, S. E. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet. Genomes 5, 93–107. https://doi.org/10.1007/s11295-008-0171-z (2009).
doi: 10.1007/s11295-008-0171-z
Emeriewen, O. F. et al. Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol. Breeding 34, 407–419. https://doi.org/10.1007/s11032-014-0043-1 (2014).
doi: 10.1007/s11032-014-0043-1
Han, Y. et al. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J. Exp. Bot. 62, 5117–5130 (2011).
pubmed: 21743103
pmcid: 3193016
Liebhard, R. et al. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breeding 10, 217–241 (2002).
Liebhard, R., Koller, B., Gianfranceschi, L. & Gessler, C. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor. Appl. Genet. 106, 1497–1508. https://doi.org/10.1007/s00122-003-1209-0 (2003).
doi: 10.1007/s00122-003-1209-0
pubmed: 12677403
pmcid: 12677403
Silfverberg-Dilworth, E. et al. Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet. Genomes 2, 202–224. https://doi.org/10.1007/s11295-006-0045-1 (2006).
doi: 10.1007/s11295-006-0045-1
Wang, A. et al. EST contig-based SSR linkage maps for Malus × domestica cv. Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Mol. Breeding 29, 379–397 (2012).
Wöhner, T. W. et al. QTL mapping of fire blight resistance in Malus xrobusta 5 after inoculation with different strains of Erwinia amylovora. Mol. Breeding 34, 217–230. https://doi.org/10.1007/s11032-014-0031-5 (2014).
doi: 10.1007/s11032-014-0031-5
Guilford, P. et al. Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94, 249–254 (1997).
Jaccoud, D., Peng, K., Feinstein, D. & Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, e25–e25 (2001).
pubmed: 11160945
pmcid: 29632
Emeriewen, O. et al. Evidence of a major QTL for fire blight resistance in the apple wild species Malus fusca. Acta Hortic. 1056, 289–294 (2014).
Sánchez-Sevilla, J. F. et al. Diversity Arrays Technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa). PLoS ONE 10, e0144960 (2015).
pubmed: 26675207
pmcid: 4682937
Schouten, H. J. et al. Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Mol. Breeding 29, 645–660. https://doi.org/10.1007/s11032-011-9579-5 (2012).
doi: 10.1007/s11032-011-9579-5
Soriano, J. M. et al. Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet. Genomes 5, 475–482. https://doi.org/10.1007/s11295-009-0201-5 (2009).
doi: 10.1007/s11295-009-0201-5
Chagne, D. et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7, e31745 (2012).
pubmed: 22363718
pmcid: 3283661
Bianco, L. et al. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PLoS ONE 9, e110377 (2014).
pubmed: 25303088
pmcid: 4193858
doi: 10.1371/journal.pone.0110377
Bianco, L. et al. Development and validation of the Axiom Apple480K SNP genotyping array. Plant J. 86, 62–74 (2016).
pubmed: 26919684
doi: 10.1111/tpj.13145
pmcid: 26919684
Di Pierro, E. A. et al. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic. Res. 3, 16057 (2016).
pubmed: 27917289
pmcid: 5120355
doi: 10.1038/hortres.2016.57
Gardner, K. M. et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 Genes Genomes Genet. 4, 1681–1687 (2014).
Norelli, J. L. et al. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS ONE 12, e0172949 (2017).
pubmed: 28257442
pmcid: 5336245
doi: 10.1371/journal.pone.0172949
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
pubmed: 21573248
pmcid: 3087801
doi: 10.1371/journal.pone.0019379
Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).
pubmed: 22389690
pmcid: 22389690
doi: 10.1371/journal.pone.0032253
Poland, J. A. & Rife, T. W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5, 92–102 (2012).
doi: 10.3835/plantgenome2012.05.0005
Kumar, S. et al. Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hortic. Res. 4, 17015 (2017).
pubmed: 28451438
pmcid: 5389204
doi: 10.1038/hortres.2017.15
Ott, A. et al. tGBS genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res. 45, e178–e178 (2017).
pubmed: 29036322
pmcid: 5716196
doi: 10.1093/nar/gkx853
Emeriewen, O. F. et al. Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol. Breeding 38, 106. https://doi.org/10.1007/s11032-018-0863-5 (2018).
doi: 10.1007/s11032-018-0863-5
Emeriewen, O. F., Richter, K., Hanke, M. V., Malnoy, M. & Peil, A. The fire blight resistance QTL of Malus fusca (Mfu10) is affected but not broken down by the highly virulent Canadian Erwinia amylovora strain E2002A. Eur. J. Plant Pathol. 141, 631–635. https://doi.org/10.1007/s10658-014-0565-8 (2015).
doi: 10.1007/s10658-014-0565-8
Emeriewen, O., Richter, K., Hanke, M.-V., Malnoy, M. & Peil, A. Further insights into Malus fusca fire blight resistance. J. Plant Pathol. 99, 45–49 (2017).
Chou, H., Sutton, G., Glodek, A. & Scott, J. in Proceedings of the Tenth Annual Genome Sequencing and Annotation Conference (GSAC X).
Li, S. & Chou, H.-H. LUCY2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20, 2865–2866 (2004).
pubmed: 15130926
pmcid: 15130926
Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred II. Error probabilities. Genome Res. 8, 186–194 (1998).
pubmed: 9521922
pmcid: 9521922
Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces usingPhred I. Accuracy assessment. Genome Res. 8, 175–185 (1998).
pubmed: 9521921
pmcid: 9521921
Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).
pubmed: 20147302
pmcid: 2844994
Li, X. et al. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436–2444 (2012).
pubmed: 22701078
pmcid: 3514673
Li, T. et al. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genet. 19, 63 (2018).
pubmed: 30139352
pmcid: 6108135
Zheng, Z. et al. Genetic diversity, oopulation structure, and botanical variety of 320 global peanut accessions revealed through tunable genotyping-by-sequencing. Sci. Rep. 8, 14500. https://doi.org/10.1038/s41598-018-32800-9 (2018).
doi: 10.1038/s41598-018-32800-9
pubmed: 30266974
pmcid: 6162295
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638
pmcid: 20525638
Broman, K., Wu, H., Sen, S. & Churchill, G. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).
pubmed: 12724300
pmcid: 12724300
Van Oojien, J. JoinMap 4, software for the calculation of genetic linkage maps in experimental population (Kyzama B.V, Cambridge, 2006).
Peil, A. et al. Strong evidence for a fire blight resistance gene of Malus ×robusta located on linkage group 3. Plant Breeding 126, 470–475. https://doi.org/10.1111/j.1439-0523.2007.01408.x (2007).
doi: 10.1111/j.1439-0523.2007.01408.x
Van Ooijen, J. W. MapQTL5, Software for the mapping of quantitative trait loci in experimental populations (Kyazma B.V., Cambridge, 2004).
Peil, A., Emeriewen, O. F., Khan, A., Kostick, S. & Malnoy, M. Status of fire blight resistance breeding in Malus.
Ban, S. H. & Choi, C. Development of an apple F1 segregating population genetic linkage map using genotyping-by-sequencing. Plant Breeding Biotechnol. 6, 434–443 (2018).
Duan, N. et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat. Commun. 8, 249. https://doi.org/10.1038/s41467-017-00336-7 (2017).
doi: 10.1038/s41467-017-00336-7
pubmed: 28811498
pmcid: 5557836
Emeriewen, O. F., Wöhner, T., Flachowsky, H. & Peil, A. Malus Hosts-Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00551 (2019).
doi: 10.3389/fpls.2019.00551
pubmed: 31105734
pmcid: 31105734
Vogt, I. et al. Gene-for-gene relationship in the host-pathogen system Malus xrobusta 5-Erwinia amylovora. New Phytol. 197, 1262–1275. https://doi.org/10.1111/nph.12094 (2013).
doi: 10.1111/nph.12094
pubmed: 23301854
pmcid: 23301854
Peil, A., Flachowsky, H., Hanke, M.-V., Richter, K. & Rode, J. Inoculation of Malus ×robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Hortic. 896, 357–362 (2011).
Gardiner, S. E. et al. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5’ accessions. BMC Genet. 13, 25. https://doi.org/10.1186/1471-2156-13-25 (2012).
doi: 10.1186/1471-2156-13-25
pubmed: 22471693
pmcid: 3443455
Peil, A. et al. Confirmation of the fire blight QTL of Malus × robusta 5 on linkage group 3. Acta Hortic. 793, 297–303 (2008).
Peil, A. et al. Mapping of fire blight resistance in Malus × robusta 5 flowers following artificial inoculation. BMC Plant Biol. 19, 532. https://doi.org/10.1186/s12870-019-2154-7 (2019).
doi: 10.1186/s12870-019-2154-7
pubmed: 31791233
pmcid: 6889339