Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 09 2020
30 09 2020
Historique:
received:
06
05
2020
accepted:
31
08
2020
entrez:
1
10
2020
pubmed:
2
10
2020
medline:
20
1
2021
Statut:
epublish
Résumé
A thorough understanding of malaria vector species composition and their bionomic characteristics is crucial to devise effective and efficient vector control interventions to reduce malaria transmission. It has been well documented in Africa that malaria interventions in the past decade have resulted in major changes in species composition from endophilic Anopheles gambiae to exophilic An. arabiensis. However, the role of cryptic rare mosquito species in malaria transmission is not well known. This study examined the species composition and distribution, with a particular focus on malaria transmission potential of novel, uncharacterized Anopheles cryptic species in western Kenya. Phylogenetic analysis based on ITS2 and COX1 genes revealed 21 Anopheles mosquito species, including two previously unreported novel species. Unusually high rates of Plasmodium sporozoite infections were detected in An. funestus, An. gambiae and eight cryptic rare species. Plasmodium falciparum, P. malariae and P. ovale sporozoite infections were identified with large proportion of mixed species infections in these vectors. This study, for the first time, reports extensive new Anopheles cryptic species involved in the malaria transmission in western Kenya. These findings underscore the importance of non-common Anopheles species in malaria transmission and the need to target them in routine vector control and surveillance efforts.
Identifiants
pubmed: 32999365
doi: 10.1038/s41598-020-73073-5
pii: 10.1038/s41598-020-73073-5
pmc: PMC7527330
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
16139Subventions
Organisme : NIAID NIH HHS
ID : R01 AI050243
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI129326
Pays : United States
Organisme : FIC NIH HHS
ID : D43 TW001505
Pays : United States
Organisme : NIH HHS
ID : U19AI129326
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123074
Pays : United States
Références
WHO. Guidelines for Malaria Vector Control (World Health Organization, Geneva, 2020).
WHO. World Malaria Report 2019 (World Health Organization, Geneva, 2019).
Keating, J. et al. Anopheles gambiae s.l. and Anopheles funestus mosquito distributions at 30 villages along the Kenyan coast. J. Med. Entomol. 42, 241–246. https://doi.org/10.1093/jmedent/42.3.241 (2005).
doi: 10.1093/jmedent/42.3.241
pubmed: 15962770
pmcid: 2673524
Noutcha, M. A. & Anumdu, C. I. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria. J. Vector Borne Dis. 46, 43–51 (2009).
pubmed: 19326707
Sande, S., Zimba, M., Chinwada, P., Masendu, H. T. & Makuwaza, A. Biting behaviour of Anopheles funestus populations in Mutare and Mutasa districts, Manicaland province, Zimbabwe: Implications for the malaria control programme. J. Vector Borne Dis. 53, 118–126 (2016).
pubmed: 27353581
Ndenga, B. A. et al. Malaria vectors and their blood-meal sources in an area of high bed net ownership in the western Kenya highlands. Malar. J. 15, 76. https://doi.org/10.1186/s12936-016-1115-y (2016).
doi: 10.1186/s12936-016-1115-y
pubmed: 26857915
pmcid: 4746809
Oyewole, I. O. et al. Behaviour and population dynamics of the major anopheline vectors in a malaria endemic area in southern Nigeria. J. Vector Borne Dis. 44, 56–64 (2007).
pubmed: 17378218
Okara, R. M. et al. Distribution of the main malaria vectors in Kenya. Malar. J. 9, 69–69. https://doi.org/10.1186/1475-2875-9-69 (2010).
doi: 10.1186/1475-2875-9-69
pubmed: 20202199
pmcid: 2845185
Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: Implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 5, 17952. https://doi.org/10.1038/srep17952 (2015).
doi: 10.1038/srep17952
pubmed: 26648001
pmcid: 4673690
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004 (2007).
doi: 10.1016/j.tree.2006.11.004
pubmed: 17129636
Collins, F. H. & Paskewitz, S. M. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol. Biol. 5, 1–9. https://doi.org/10.1111/j.1365-2583.1996.tb00034.x (1996).
doi: 10.1111/j.1365-2583.1996.tb00034.x
pubmed: 8630529
Conn, J. E. News from Africa: Novel anopheline species transmit Plasmodium in western Kenya. Am. J. Trop. Med. Hyg. 94, 251–252. https://doi.org/10.4269/ajtmh.16-0020 (2016).
doi: 10.4269/ajtmh.16-0020
pubmed: 26787151
pmcid: 4751942
Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit. Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).
doi: 10.1186/s13071-019-3332-z
pubmed: 30744665
pmcid: 6369554
St Laurent, B. et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 94, 327–335. https://doi.org/10.4269/ajtmh.15-0562 (2016).
doi: 10.4269/ajtmh.15-0562
pubmed: 26787150
pmcid: 4751935
Coetzee, M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosq. Syst. 26, 125 (1994).
Hackett, B. J. et al. Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and An. rivulorum, and uncover a cryptic taxon. Insect Mol. Biol. 9, 369–374. https://doi.org/10.1046/j.1365-2583.2000.00198.x (2000).
doi: 10.1046/j.1365-2583.2000.00198.x
pubmed: 10971714
Spillings, B. L. et al. A new species concealed by Anopheles funestus Giles, a major malaria vector in Africa. Am. J. Trop. Med. Hyg. 81, 510–515 (2009).
doi: 10.4269/ajtmh.2009.81.510
Crawford, J. E. et al. Evolution of GOUNDRY, a cryptic subgroup of Anopheles gambiae s.l., and its impact on susceptibility to Plasmodium infection. Mol. Ecol. 25, 1494–1510. https://doi.org/10.1111/mec.13572 (2016).
doi: 10.1111/mec.13572
pubmed: 26846876
Riehle, M. M. et al. A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. Science (New York, N.Y.) 331, 596–598. https://doi.org/10.1126/science.1196759 (2011).
doi: 10.1126/science.1196759
Barrón, M. et al. A new species in the major malaria vector complex sheds light on reticulated species evolution. Sci. Rep. https://doi.org/10.1038/s41598-019-49065-5 (2019).
doi: 10.1038/s41598-019-49065-5
pubmed: 31611571
pmcid: 6791875
Stevenson, J. et al. Novel vectors of malaria parasites in the western highlands of Kenya. Emerg. Infect. Dis. 18, 1547–1549. https://doi.org/10.3201/eid1809.120283 (2012).
doi: 10.3201/eid1809.120283
pubmed: 22932762
pmcid: 3437730
Scott, J. A., Brogdon, W. G. & Collins, F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49, 520–529. https://doi.org/10.4269/ajtmh.1993.49.520 (1993).
doi: 10.4269/ajtmh.1993.49.520
pubmed: 8214283
Dusfour, I. et al. Polymerase chain reaction identification of three members of the Anopheles sundaicus (Diptera: Culicidae) complex, malaria vectors in Southeast Asia. J. Med. Entomol. 44, 723–731. https://doi.org/10.1603/0022-2585(2007)44[723:pcriot]2.0.co;2 (2007).
doi: 10.1603/0022-2585(2007)44[723:pcriot]2.0.co;2
pubmed: 17915501
Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).
doi: 10.1111/jvec.12128
pubmed: 26047180
pmcid: 4882763
Beebe, N. W. & Saul, A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).
doi: 10.4269/ajtmh.1995.53.478
pubmed: 7485705
Paskewitz, S. M., Ng, K., Coetzee, M. & Hunt, R. H. Evaluation of the polymerase chain reaction method for identifying members of the Anopheles gambiae (Diptera: Culicidae) complex in Southern Africa. J. Med. Entomol. 30, 953–957. https://doi.org/10.1093/jmedent/30.5.953 (1993).
doi: 10.1093/jmedent/30.5.953
pubmed: 8254648
Bourke, B. P., Oliveira, T. P., Suesdek, L., Bergo, E. S. & Sallum, M. A. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasit. Vectors 6, 111. https://doi.org/10.1186/1756-3305-6-111 (2013).
doi: 10.1186/1756-3305-6-111
pubmed: 23597081
pmcid: 3641011
Kumar, N. P., Rajavel, A. R., Natarajan, R. & Jambulingam, P. DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol. 44, 1–7. https://doi.org/10.1603/0022-2585(2007)44[1:dbcdso]2.0.co;2 (2007).
doi: 10.1603/0022-2585(2007)44[1:dbcdso]2.0.co;2
pubmed: 17294914
Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).
doi: 10.1111/j.1471-8286.2007.01678.x
pubmed: 18784790
pmcid: 1890991
Beebe, N. W. DNA barcoding mosquitoes: Advice for potential prospectors. Parasitology 145, 622–633. https://doi.org/10.1017/s0031182018000343 (2018).
doi: 10.1017/s0031182018000343
pubmed: 29564995
Carter, T. E., Yared, S., Hansel, S., Lopez, K. & Janies, D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar. J. 18, 135–135. https://doi.org/10.1186/s12936-019-2768-0 (2019).
doi: 10.1186/s12936-019-2768-0
pubmed: 30992003
pmcid: 6469081
WHO. Global Technical Strategy for Malaria 2016–2030 (World Health Organization, Geneva, 2015).
Githeko, A. K., Serddvice, M. W., Mbogo, C. M., Atieli, F. K. & Juma, F. O. Plasmodium falciparum sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann. Trop. Med. Parasitol. 87, 379–391. https://doi.org/10.1080/00034983.1993.11812782 (1993).
doi: 10.1080/00034983.1993.11812782
pubmed: 8250629
Bass, C. et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar. J. 7, 177. https://doi.org/10.1186/1475-2875-7-177 (2008).
doi: 10.1186/1475-2875-7-177
pubmed: 18793416
pmcid: 2553798
Russell, T. L. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 80. https://doi.org/10.1186/1475-2875-10-80 (2011).
doi: 10.1186/1475-2875-10-80
pubmed: 21477321
pmcid: 3084176
Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).
doi: 10.1186/1475-2875-12-56
pubmed: 23388506
pmcid: 3570334
Pombi, M. et al. Unexpectedly high Plasmodium sporozoite rate associated with low human blood index in Anopheles coluzzii from a LLIN-protected village in Burkina Faso. Sci. Rep. 8, 12806. https://doi.org/10.1038/s41598-018-31117-x (2018).
doi: 10.1038/s41598-018-31117-x
pubmed: 30143698
pmcid: 6109043
Kibret, S. & Wilson, G. G. Increased outdoor biting tendency of Anopheles arabiensis and its challenge for malaria control in Central Ethiopia. Public Health 141, 143–145. https://doi.org/10.1016/j.puhe.2016.09.012 (2016).
doi: 10.1016/j.puhe.2016.09.012
pubmed: 27931990
Machani, M. G. et al. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS ONE 15, e0224718. https://doi.org/10.1371/journal.pone.0224718 (2020).
doi: 10.1371/journal.pone.0224718
pubmed: 32097407
pmcid: 7041793
Massebo, F., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Zoophagic behaviour of anopheline mosquitoes in southwest Ethiopia: Opportunity for malaria vector control. Parasit. Vectors 8, 645. https://doi.org/10.1186/s13071-015-1264-9 (2015).
doi: 10.1186/s13071-015-1264-9
pubmed: 26684464
pmcid: 4684615
Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: Case studies from the effects of deforestation in East African highlands. Ann. N. Y. Acad. Sci. 1249, 204–210. https://doi.org/10.1111/j.1749-6632.2011.06432.x (2012).
doi: 10.1111/j.1749-6632.2011.06432.x
pubmed: 22320421
pmcid: 3767301
Gillies, M. T. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. S. Afr. Inst. Med. Res. 55, 1–143 (1987).
Shanks, G. D., Hay, S. I., Omumbo, J. A. & Snow, R. W. Malaria in Kenya’s western highlands. Emerg. Infect. Dis. 11, 1425–1432. https://doi.org/10.3201/eid1109.041131 (2005).
doi: 10.3201/eid1109.041131
pubmed: 16229773
pmcid: 3310610
Wanjala, C. L., Waitumbi, J., Zhou, G. & Githeko, A. K. Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: Its application to malaria epidemic prediction. Parasit. Vectors 4, 81. https://doi.org/10.1186/1756-3305-4-81 (2011).
doi: 10.1186/1756-3305-4-81
pubmed: 21595898
pmcid: 3117811
Ototo, E. N. et al. Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar. J. 14, 244. https://doi.org/10.1186/s12936-015-0763-7 (2015).
doi: 10.1186/s12936-015-0763-7
pubmed: 26082138
pmcid: 4468962
Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: Implications for better understanding of residual transmission. Malar. J. 16, 443–443. https://doi.org/10.1186/s12936-017-2098-z (2017).
doi: 10.1186/s12936-017-2098-z
pubmed: 29110670
pmcid: 5674686
Degefa, T. et al. Evaluation of the performance of new sticky pots for outdoor resting malaria vector surveillance in western Kenya. Parasit. Vectors 12, 278. https://doi.org/10.1186/s13071-019-3535-3 (2019).
doi: 10.1186/s13071-019-3535-3
pubmed: 31151470
pmcid: 6544919
Gillies, M. T. & Meillon, B. D. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). Publ. S. Afr. Inst. Med. Res. 54, 1–343 (1968).
Koekemoer, L. L., Kamau, L., Hunt, R. H. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am. J. Trop. Med. Hyg. 66, 804–811. https://doi.org/10.4269/ajtmh.2002.66.804 (2002).
doi: 10.4269/ajtmh.2002.66.804
pubmed: 12224596
Erlank, E., Koekemoer, L. L. & Coetzee, M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar. J. 17, 43. https://doi.org/10.1186/s12936-018-2189-5 (2018).
doi: 10.1186/s12936-018-2189-5
pubmed: 29357873
pmcid: 5778787
Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 89. https://doi.org/10.1186/s12936-020-03168-x (2020).
doi: 10.1186/s12936-020-03168-x
pubmed: 32093677
pmcid: 7038563
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
pubmed: 7881515
Veron, V., Simon, S. & Carme, B. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp. Parasitol. 121, 346–351. https://doi.org/10.1016/j.exppara.2008.12.012 (2009).
doi: 10.1016/j.exppara.2008.12.012
pubmed: 19124021
Shokoples, S. E., Ndao, M., Kowalewska-Grochowska, K. & Yanow, S. K. Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J. Clin. Microbiol. 47, 975–980. https://doi.org/10.1128/jcm.01858-08 (2009).
doi: 10.1128/jcm.01858-08
pubmed: 19244467
pmcid: 2668309
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).
Brown, N. P., Leroy, C. & Sander, C. MView: A web-compatible database search or multiple alignment viewer. Bioinformatics 14, 380–381. https://doi.org/10.1093/bioinformatics/14.4.380 (1998).
doi: 10.1093/bioinformatics/14.4.380
pubmed: 9632837
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
doi: 10.1093/molbev/msw054
pubmed: 27004904
Hammer, Ø, Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29, 151–154. https://doi.org/10.1016/0022-5193(70)90124-4 (1970).
doi: 10.1016/0022-5193(70)90124-4
pubmed: 5493290
Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Organ. 30, 241–261 (1964).
pubmed: 14153413
pmcid: 2554803
Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17, 857–872. https://doi.org/10.1002/(sici)1097-0258(19980430)17:8%3c857::aid-sim777%3e3.0.co;2-e (1998).
doi: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
pubmed: 9595616