A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation.


Journal

IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520

Informations de publication

Date de publication:
06 2021
Historique:
pubmed: 1 10 2020
medline: 25 9 2021
entrez: 30 9 2020
Statut: ppublish

Résumé

Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation which can be learned by the model plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.

Identifiants

pubmed: 32997637
doi: 10.1109/JBHI.2020.3027910
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2162-2171

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Artificial Intelligence COVID-19 SARS-CoV-2 Pandemics

Classifications MeSH