A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode.
Biosensing Techniques
Concanavalin A
/ chemistry
Escherichia coli
/ isolation & purification
Lectins
/ chemistry
Limit of Detection
Plant Lectins
/ chemistry
Porosity
Silicon
/ chemistry
Spectroscopy, Fourier Transform Infrared
Staphylococcus aureus
/ isolation & purification
Wheat Germ Agglutinins
/ chemistry
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 09 2020
29 09 2020
Historique:
received:
29
01
2020
accepted:
27
08
2020
entrez:
30
9
2020
pubmed:
1
10
2020
medline:
14
1
2021
Statut:
epublish
Résumé
Accuracy and speed of detection, along with technical and instrumental simplicity, are indispensable for the bacterial detection methods. Porous silicon (PSi) has unique optical and chemical properties which makes it a good candidate for biosensing applications. On the other hand, lectins have specific carbohydrate-binding properties and are inexpensive compared to popular antibodies. We propose a lectin-conjugated PSi-based biosensor for label-free and real-time detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by reflectometric interference Fourier transform spectroscopy (RIFTS). We modified meso-PSiO
Identifiants
pubmed: 32994483
doi: 10.1038/s41598-020-72457-x
pii: 10.1038/s41598-020-72457-x
pmc: PMC7525577
doi:
Substances chimiques
Lectins
0
Plant Lectins
0
Ulex europaeus lectins
0
Wheat Germ Agglutinins
0
Concanavalin A
11028-71-0
Silicon
Z4152N8IUI
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16017Références
World Health Organization (WHO); the United Nations Children’s Fund (UNICEF). Progress on drinking water, sanitation, and hygiene: 2017. WHO and UNICEF 1–66 (2017).
Oluwaseun, A. C. Biosensors: a fast-growing technology for pathogen detection in agriculture and food sector. In (ed. Phazang, P.) Ch. 4 (IntechOpen, 2018). https://doi.org/10.5772/intechopen.74668 .
Perumal, V. & Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 12, 1–15 (2014).
doi: 10.1016/j.jab.2013.02.001
Kozitsina, A. N. et al. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors 8, 35 (2018).
pmcid: 6022999
doi: 10.3390/bios8020035
Khansili, N., Rattu, G. & Krishna, P. M. Label-free optical biosensors for food and biological sensor applications. Sensors Actuators B Chem. 265, 35–49 (2018).
doi: 10.1016/j.snb.2018.03.004
Taheri, R. A., Rezayan, A. H., Rahimi, F., Mohammadnejad, J. & Kamali, M. Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens. Bioelectron. 86, 484–488 (2016).
pubmed: 27442077
doi: 10.1016/j.bios.2016.07.006
pmcid: 27442077
Dhanekar, S. & Jain, S. Porous silicon biosensor: Current status. Biosens. Bioelectron. 41, 54–64 (2013).
pubmed: 23122704
doi: 10.1016/j.bios.2012.09.045
pmcid: 23122704
Canham, L. Handbook of Porous Silicon (Springer International Publishing, Berlin, 2014). https://doi.org/10.1007/978-3-319-04508-5 .
doi: 10.1007/978-3-319-04508-5
Santos, H. et al. Porous silicon for biomedical applications. (Woodhead Publishing, 2014). https://doi.org/10.1016/B978-0-85709-711-8.50023-4 .
Makiyan, F. et al. Label-free discrimination of single nucleotide changes in DNA by reflectometric interference Fourier transform spectroscopy. Colloids Surfaces B Biointerfaces 181, 714–720 (2019).
pubmed: 31228854
doi: 10.1016/j.colsurfb.2019.05.066
Pace, S. et al. Characterization of phospholipid bilayer formation on a thin film of porous SiO
pubmed: 22486481
doi: 10.1021/la301085t
pmcid: 22486481
Anglin, E. J., Cheng, L., Freeman, W. R. & Sailor, M. J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008).
pubmed: 18508154
pmcid: 2710886
doi: 10.1016/j.addr.2008.03.017
Massad-Ivanir, N. et al. Porous silicon-based biosensors: Towards real-time optical detection of target bacteria in the food industry. Sci. Rep. 6, 38099 (2016).
pubmed: 27901131
pmcid: 5128872
doi: 10.1038/srep38099
Zhang, H., Lv, J. & Jia, Z. Detection of ammonia-oxidizing bacteria (AOB) using a porous silicon optical biosensor based on a multilayered double Bragg mirror structure. Sensors 18, 105 (2018).
doi: 10.3390/s18010105
Tang, Y., Li, Z., Luo, Q., Liu, J. & Wu, J. Bacteria detection based on its blockage effect on silicon nanopore array. Biosens. Bioelectron. 79, 715–720 (2016).
pubmed: 26774087
doi: 10.1016/j.bios.2015.12.109
pmcid: 26774087
Bonanno, L. M. & DeLouise, L. A. Whole blood optical biosensor. Biosens. Bioelectron. 23, 444–448 (2007).
pubmed: 17720473
pmcid: 2080782
doi: 10.1016/j.bios.2007.05.008
Gongalsky, M. B., Koval, A. A., Schevchenko, S. N., Tamarov, K. P. & Osminkina, L. A. Double etched porous silicon films for improved optical sensing of bacteria. J. Electrochem. Soc. 164, B581–B584 (2017).
doi: 10.1149/2.1821712jes
Li, S., Huang, J. & Cai, L. A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology 22, 425502 (2011).
pubmed: 21941035
doi: 10.1088/0957-4484/22/42/425502
pmcid: 21941035
Chan, S., Horner, S. R., Fauchet, P. M. & Miller, B. L. Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123, 11797–11798 (2001).
pubmed: 11716737
doi: 10.1021/ja016555r
pmcid: 11716737
Dan, X., Wenlong, L. & Ng, T. Development and applications of lectins as biological tools in biomedical research. Med. Res. Rev. 36, 221–247 (2015).
pubmed: 26290041
doi: 10.1002/med.21363
pmcid: 26290041
Bertók, T. et al. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: A comparative study with three bioanalytical methods. Anal. Chim. Acta 853, 555–562 (2015).
pubmed: 25467503
doi: 10.1016/j.aca.2014.10.029
pmcid: 25467503
Kluková, L., Bertók, T., Kasák, P. & Tkac, J. Nanoscale controlled architecture for development of ultrasensitive lectin biosensors applicable in glycomics. Anal. Methods 6, 4922–4931 (2014).
pubmed: 27231486
pmcid: 4878709
doi: 10.1039/c4ay00495g
Filip, J., Zavahir, S., Klukova, L., Tkac, J. & Kasak, P. Immobilization of concanavalin A lectin on a reduced graphene oxide-thionine surface by glutaraldehyde crosslinking for the construction of an impedimetric biosensor. J. Electroanal. Chem. 794, 156–163 (2017).
doi: 10.1016/j.jelechem.2017.04.019
Hendrickson, O. D. & Zherdev, A. Analytical application of lectins. Crit. Rev. Anal. Chem. 48, 279–292 (2018).
pubmed: 29314902
doi: 10.1080/10408347.2017.1422965
pmcid: 29314902
Wang, B. & Anzai, J.-I. Recent progress in lectin-based biosensors. Materials. 8, 8590–8607 (2015).
pubmed: 28793731
pmcid: 5458863
doi: 10.3390/ma8125478
Leonard, H., Halachmi, S., Ben-Dov, N., Nativ, O. & Segal, E. Unraveling antimicrobial susceptibility of bacterial networks on micropillar architectures using intrinsic phase-shift spectroscopy. ACS Nano 11, 6167–6177 (2017).
pubmed: 28485961
doi: 10.1021/acsnano.7b02217
pmcid: 28485961
Errien, N., Vellutini, L., Louarn, G. & Froyer, G. Surface characterization of porous silicon after pore opening processes inducing chemical modifications. Appl. Surf. Sci. 253, 7265–7271 (2007).
doi: 10.1016/j.apsusc.2007.03.017
Sailor, M. J. Porous Silicon in Practice: Preparation, Characterization and Applications (Wiley, New York, 2012). https://doi.org/10.1002/9783527641901 .
doi: 10.1002/9783527641901
Urmann, K., Arshavsky-Graham, S., Walter, J. G., Scheper, T. & Segal, E. Whole-cell detection of live Lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst 141, 5432–5440 (2016).
pubmed: 27381045
doi: 10.1039/C6AN00810K
pmcid: 27381045
Eriksson, L. et al. Process analytical technology (PAT) and quality by designons. In Multi- and Megavariate Data Analysis. Basic Principles and Applicati. 1–103 (Umetrics, 2013).
Lenshin, A., Kashkarov, V., Turishchev, S., Smirnov, M. & Domashevskaya, E. Influence of natural aging on photoluminescence from porous silicon. Tech. Phys. Lett. 37, 789–792 (2011).
doi: 10.1134/S1063785011090124
Shabir, Q. et al. Quantification and reduction of the residual chemical reactivity of passivated biodegradable porous silicon for drug delivery applications. Silicon 10, 349–359 (2018).
doi: 10.1007/s12633-016-9454-4
Wu, E. C., Andrew, J. S., Buyanin, A., Kinsella, J. M. & Sailor, M. J. Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem. Commun. 47, 5699–5701 (2011).
doi: 10.1039/c1cc10993f
Lee, S. H., Kang, J. S. & Kim, D. A mini review: Recent advances in surface modification of porous silicon. Materials 11, 2557 (2018).
pmcid: 6316318
doi: 10.3390/ma11122557
Majoul, N., Aouida, S. & Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388–391 (2015).
doi: 10.1016/j.apsusc.2015.01.107
Hiraoui, M. et al. Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Mater. Chem. Phys. 128, 151–156 (2011).
doi: 10.1016/j.matchemphys.2011.02.052
De Stefano, L. et al. Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J. R. Soc. Interface 10, 20130160 (2013).
pubmed: 23536541
pmcid: 3645424
doi: 10.1098/rsif.2013.0160
Salem, M. S., Sailor, M. J., Harraz, F. A., Sakka, T. & Ogata, Y. H. Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds. J. Appl. Phys. 100, 83520 (2006).
doi: 10.1063/1.2360389
Ferreira, I. G. et al. Glycosylation as a main regulator of growth and death factor receptors signaling. Int. J. Mol. Sci. 19, 580 (2018).
doi: 10.3390/ijms19020580
Kaltner, H. & Gabius, H.-J. Sensing glycans as biochemical messages by tissue lectins: The sugar code at work in vascular biology. Thromb. Haemostasis 119, 517–533 (2019).
doi: 10.1055/s-0038-1676968
Saucedo, N. M., Gao, Y., Pham, T. & Mulchandani, A. Lectin- and saccharide-functionalized nano-chemiresistor arrays for detection and identification of pathogenic bacteria infection. Biosensors 8, 63 (2018).
pmcid: 6165015
doi: 10.3390/bios8030063
Isabelle, B., Benito, J., Mellet, C., García Fernández, J. & Defaye, J. Dependence of concanavalin a binding on anomeric configuration, linkage type, and ligand multiplicity for thiourea-bridged mannopyranosyl–β-cyclodextrin conjugates. ChemBioChem 2, 777–783 (2001).
doi: 10.1002/1439-7633(20011001)2:10<777::AID-CBIC777>3.0.CO;2-C
Lu, G., Crihfield, C. L., Gattu, S., Veltri, L. M. & Holland, L. A. Capillary electrophoresis separations of glycans. Chem. Rev. 118, 7867–7885 (2018).
pubmed: 29528644
pmcid: 6135675
doi: 10.1021/acs.chemrev.7b00669
Cummings, R. & Etzler, M. Antibodies and lectins in glycan analysis. In Essentials of Glycobiology (eds Varki, A. et al.) (2009). https://doi.org/10.1101/glycobiology.3e.048 .
Kobayashi, Y., Tateno, H., Ogawa, H., Yamamoto, K. & Hirabayashi, J. Comprehensive list of lectins: origins, natures, and carbohydrate specificities. In Lectins: Methods and Protocols (ed. Hirabayashi, J.) 555–577 (Springer, New York, 2014). https://doi.org/10.1007/978-1-4939-1292-6_45 .
doi: 10.1007/978-1-4939-1292-6_45
Safina, G., van Lier, M. & Danielsson, B. Flow-injection assay of the pathogenic bacteria using lectin-based quartz crystal microbalance biosensor. Talanta 77, 468–472 (2008).
doi: 10.1016/j.talanta.2008.03.033
Wang, Y., Ye, Z., Si, C. & Ying, Y. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chem. 136, 1303–1308 (2013).
pubmed: 23194527
doi: 10.1016/j.foodchem.2012.09.069
pmcid: 23194527
Yang, H., Zhou, H., Hao, H., Gong, Q. & Nie, K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sensors Actuators B Chem. 229, 297–304 (2016).
doi: 10.1016/j.snb.2015.08.034
Wan, Y., Zhang, D. & Hou, B. Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay. Talanta 80, 218–223 (2009).
pubmed: 19782217
doi: 10.1016/j.talanta.2009.06.057
pmcid: 19782217
Serra, B., Gamella, M., Reviejo, A. J. & Pingarrón, J. M. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal. Bioanal. Chem. 391, 1853–1860 (2008).
pubmed: 18523759
doi: 10.1007/s00216-008-2141-6
pmcid: 18523759
Yang, H., Wang, Y., Qi, H., Gao, Q. & Zhang, C. Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled Concanavalin A as a probe for the detection of Escherichia coli. Biosens. Bioelectron. 35, 376–381 (2012).
pubmed: 22521414
doi: 10.1016/j.bios.2012.03.021
pmcid: 22521414
Shen, Z. et al. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal. Chem. 79, 2312–2319 (2007).
pubmed: 17295446
pmcid: 2519234
doi: 10.1021/ac061986j
Tenenbaum, E. & Segal, E. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound. Analyst 140, 7726–7733 (2015).
pubmed: 26456237
doi: 10.1039/C5AN01717C
Massad-Ivanir, N., Shtenberg, G. & Segal, E. Optical detection of E. coli bacteria by mesoporous silicon biosensors. JoVE https://doi.org/10.3791/50805 (2013).
doi: 10.3791/50805
pubmed: 24300026
Schwefel, D. et al. Structural basis of multivalent binding to wheat germ agglutinin. J. Am. Chem. Soc. 132, 8704–8719 (2010).
pubmed: 20527753
doi: 10.1021/ja101646k
Hardman, K. D. & Ainsworth, C. F. Structure of concanavalin A at 2.4-Ang resolution. Biochemistry 11, 4910–4919 (1972).
pubmed: 4638345
doi: 10.1021/bi00776a006
pmcid: 4638345
Loris, R. et al. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site11Edited by R. Huber. J. Mol. Biol. 301, 987–1002 (2000).
pubmed: 10966800
doi: 10.1006/jmbi.2000.4016
pmcid: 10966800
Tra, V. N. & Dube, D. H. Glycans in pathogenic bacteria–potential for targeted covalent therapeutics and imaging agents. Chem. Commun. 50, 4659–4673 (2014).
doi: 10.1039/C4CC00660G
Gamella, M., Campuzano, S., Parrado, C., Reviejo, A. J. & Pingarrón, J. M. Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta 78, 1303–1309 (2009).
pubmed: 19362192
doi: 10.1016/j.talanta.2009.01.059
pmcid: 19362192
Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D. & Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 89, 12666–12673 (2017).
pubmed: 28985467
doi: 10.1021/acs.analchem.7b02653
pmcid: 28985467
Eriksson, L., Johansson, E., Antti, H. & Holmes, E. Multi- and Megavariate Data Analysis. In 263–336 (2005). https://doi.org/10.1201/b14117-9 .