Resistance of a Halobacterium salinarum isolate from a solar saltern to cadmium, lead, nickel, zinc, and copper.
Generation time
Growth kinetics
Halobacterium salinarum
Heavy metals
Minimal inhibitory concentrations
Solar saltern
Tolerance
Journal
Antonie van Leeuwenhoek
ISSN: 1572-9699
Titre abrégé: Antonie Van Leeuwenhoek
Pays: Netherlands
ID NLM: 0372625
Informations de publication
Date de publication:
Nov 2020
Nov 2020
Historique:
received:
29
06
2020
accepted:
16
09
2020
pubmed:
26
9
2020
medline:
17
7
2021
entrez:
25
9
2020
Statut:
ppublish
Résumé
The current study focuses on the tolerance of a strain of Halobacterium salinarum isolated from Sfax solar saltern (Tunisia) towards cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), and copper (Cu) by using agar dilution methods in complex and minimal media. The results showed the least inhibitory metals based on Minimum Inhibitory Concentrations (MICs) were lead (MIC = 4.5 mM), cadmium (MIC = 4 mM), and nickel (MIC = 2.5 mM) in complex medium. The MICs of these metals were more inhibitory (MIC < 2 mM) in the other tested media. The archaeal strain revealed a high sensitivity for copper and zinc, with MICs below 0.5 mM for both metals. Growth kinetics in complex and minimal media showed the strain to be more sensitive to the metals in liquid media than in solid media. The growth kinetic assays indicated the presence of selected heavy metals resulted in a lower growth rate and lower total cell mass relative to the control. Despite that cadmium and lead are nonessential and have no nutrient value, they were the most tolerated metals by H. salinarum strain. In addition, pigment intensity in the strain was inhibited by the presence of the heavy metals relative to the control.
Identifiants
pubmed: 32974806
doi: 10.1007/s10482-020-01475-6
pii: 10.1007/s10482-020-01475-6
doi:
Substances chimiques
Metals, Heavy
0
Cadmium
00BH33GNGH
Lead
2P299V784P
Sodium Chloride
451W47IQ8X
Copper
789U1901C5
Nickel
7OV03QG267
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1699-1711Références
Al-Momani FA, Massadeh AM, Hadad YA (2007) Uptake of zinc and copper by halophilic bacteria isolated from the Dead Sea Shore, Jordan. Biol Trace Elem Res 115:291–300
pubmed: 17625249
Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. World J Microbiol Biotechnol 21:1237–1243
Amoozegar MA, Ghazanfar N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress Biol Scib 2:1–11
Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178
pubmed: 17081069
Azri C, Maalej A, Medhioub K, Rosset R (2007) Evolution of atmospheric pollutants in the city of Sfax (Tunisia) (October 1996–June 1997). Atmosfera 20:223–246
Azri C, Abida H, Medhioub K (2009) Geochemical behaviour of the Tunisian background aerosols in sirocco wind circulations. Adv Atmos Sci 26:390–402
Azri C, Abida H, Medhioub K (2010) Geochemical behaviour of the aerosol sampled in a suburban zone of Sfax City (Tunisia). Int J Environ Pollut 41:51–69
Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–517
pubmed: 18373061
Baati H, Amdouni R, Azri C, Gharsallah N, Ammar E (2012) Brines modelling progress: a management tool for Tunisian multipond solar salterns, based on physical, chemical, and microbial parameters. Geomicrobiol J 29:139–150
Baati H, Bahloul M, Amdouni R, Azri C (2020) Metal contamination and resistance of superficial sediment’s prokaryotic flora in extreme environments: case of Sfax solar saltern (Tunisia). Geomicrobiol J 37:345–354
Bahloul M, Chabbi I, Dammak R, Amdouni R, Medhioub K, Azri C (2015a) Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, Southern Tunisia. Environ Monit Assess 177:1–17
Bahloul M, Chabbi I, Sdiri A, Amdouni R, Medhioub K, Azri C (2015b) Spatiotemporal variation of particulate fallout instances in Sfax City, Southern Tunisia: influence of sources and meteorology. Adv Meteorol 471396:11
Berney M, Weilenmann HU, IhssenJ BassinC, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593
pubmed: 16597961
pmcid: 1449012
Bhojiya AA, Joshi H (2016) Heavy metal tolerance pattern of Pseudomonas Putida isolated from heavy metal contaminated soil of Zawar, Udaipur (India). Int J Innov Knowl Concept 2:58–64
Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16
pubmed: 20455933
Bonete MJ, Bautista V, Esclapez J, Bonete MJG, Pire C, Camacho M, Crespo JT, Espinosa RMM (2015) New uses of Haloarchaeal species in bioremediation processes. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. INTECH, London, pp 23–49
Boujelben I, Martinez-Garcia M, Pelt JV, Maalej S (2014) Diversity of cultivable halophilic Archaea and Bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie Leeuwenhoek 106:675–692
pubmed: 25064091
Braganca JM, Furtado I (2009) Isolation and characterization of haloarchaea from low-salinity coastal sediments and waters of Goa. Curr Sci 96:1182–1184
Braganca JM, Furtado I (2013) Resistance of Halobacterium strain R1 to cadmium during growth in mineral salts medium devoid of growth factors. Asian J Microbiol Biotech Environ Sci 15:299–302
Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotox Environ Safe 45:198–207
Chasapis CT, Andreini C, Georgiopolou AK, Stefanidou ME, Vlamis-Gardikas A (2017) Identification of the zinc, copper, and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Arch Microbiol 199:1141–1149
pubmed: 28478602
Chaudhary A, Pasha IM, Bhakti BS, Braganca JM (2014) Cadmium tolerance by, haloarchaeal strains isolated from solar saltern of Goa, India. Int J Biosci Biochem Bioinforma 4:1–6
Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775
Dammak R, Bahloul M, Chabbi I, Azri C (2016) Spatial and temporal variations of dust particle deposition at three urban/suburban areas in Sfax city (Tunisia). Environ Monit Assess 188(6):336
pubmed: 27156731
Das D, Salgaonkar BB, Mani K, Braganca JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere 112:385–392
pubmed: 25048931
DasSarma S, Fleischmann EM, Rodriguez-Valera F (1995) Appendix 2. Media for halophiles. In: Robb FT (ed) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 225–230
DeLong EF (1992) Archaea in coastal marine environments. Proc Nalt Acad Sci USA 89:5685–5690
Enache M, Teodosiu G, Faghi AM, Dumitru L (2000) Identification of halophilic Archaebacteria isolated from some Romanian salt lakes on the basis of lipids composition. Rev Roum Biol Ser Biol Veg 45:93–99
Erdogmus SF, Multu B, Korcan SF, Guven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic Archaea isolated from Camalty saltern, Turkey. Water Air Soil Pollut 224:1449–1458
Gabballa A, Amer R, Hussein H, Moawad H, Sabry S (2003) Heavy metals resistance pattern of moderately halophytic bacteria. Arab J Biotech 6:267–278
Huo YY, Li ZY, Cheng H, Wang CH, Xu XW (2014) High quality draft genome sequence of the heavy metal resistant bacterium Halomonas zincidurans type strain B6T. Stand Genomic Sci 9:30–39
pubmed: 25945155
pmcid: 4286145
Japan International Cooperation Agency “JICA” (1993) The study on waste water treatment and recycling of selected industries in the region of Sfax in the Republic of Tunisia, JICA LIBRARY1115588
Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854
pubmed: 16751342
pmcid: 1484451
Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227
pubmed: 15844015
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL (2018) Diversity and niche of Archaea in bioremediation. Archaea 1–17
Kumar S, Stecher G, Li M, Knyaz C, Tamur K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
pubmed: 29722887
pmcid: 29722887
Lagorce A, Fourçans A, Dutertre M, Bouyssiere B, Zivanovic Y, Confalonieri F (2012) Genome wide transcriptional response of the archaeon Thermococcus gammatolerans to cadmium. PLoS ONE 7:35–41
Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153–1162
pubmed: 21799955
pmcid: 4130172
Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic Archaea at the initial and final stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15
pubmed: 22747590
pmcid: 3444409
Moreno ML, Piubeli F, Bonfa MRL, Garcıa MT, Durrant LR, Mellado E (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113:550–559
pubmed: 22716924
Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53:1199–1202
pubmed: 16347350
pmcid: 203836
Onishi H, Kobayashi T, Morita N, Baba M (1984) Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium tolerant Pseudomonas sp. Agric Biol Chem 48:2441–2448
Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematic. Int J Syst Evol Microbiol 62:263–271
pubmed: 22155757
Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 1–13
Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic Archaea. Biotechnol Biotechnol Equip 23:791–795
Raghavan TM, Furtado I (2005) Expression of carotenoid pigments of haloarchaeal cultures exposed to aniline. Environ Toxicol 20:165–169
pubmed: 15793825
Rios M, Nieto JJ, Ventosa A (1998) Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int Microbiol 1:45–51
pubmed: 10943340
Salgaonkar BB, Mani K, Nair A, Gangadharan S, Braganca JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Proteins 4:98–107
pubmed: 26781851
Salgaonkar BB, Das D, Bragança JM (2016) Resistance of extremely halophilic Archaea to zinc and zinc oxide nanoparticles. Appl Nanosci 6:251–258
Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447–463
Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 1–16
Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814
pubmed: 12361290
Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Grégori G, Denis M, Dukan S, Maalej S (2011) Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 15:347–358
pubmed: 21424516
pmcid: 3084946
Unz RF, Shuttleworth KL (1996) Microbial mobilization and immobilization of heavy metals. Curr Opin Biotechnol 7:307–310
pubmed: 8785435
Voica DM, Bartha L, Banciu H, Oren A (2016) Heavy metal resistance in halophilic Bacteria and Archaea. FEMS Microbiol Lett 363:1–8
Völkel S, Fröls S, Pfeifer F (2018) Heavy metal ion stress on Halobacterium salinarum R1 planktonic cells and biofilms. Front Microbiol 9:1–14
Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G (2020) How to cope with heavy metal ions: cellular and proteome-level stress response to divalent copper and nickel in Halobacterium salinarum R1 planktonic and biofilm cells. Front Microbiol 10:1–15
Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194
pubmed: 15126481
pmcid: 400623
Wang QF, Yang WLH, Liu YL, Cao HH, Pfaffenhuemer M, Stan-Lotter H, Guo GQ (2007) Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57:600–604
pubmed: 17329792
pmcid: 3182530
Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and bio-kinetic properties of solar saltern halobacterial strains for managing Zn
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617
pubmed: 28005526
pmcid: 5563544
Zheng A, Alm EW, Stahl DA, Raskin L (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513
pubmed: 8953722
pmcid: 168277
Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126
pubmed: 20163899
Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916