A novel lung alveolar cell model for exploring volatile biomarkers of particle-induced lung injury.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 09 2020
24 09 2020
Historique:
received:
23
06
2020
accepted:
03
09
2020
entrez:
25
9
2020
pubmed:
26
9
2020
medline:
19
12
2020
Statut:
epublish
Résumé
Quartz can increase oxidative stress, lipid peroxidation, and inflammation. The objective of this study was to explore the volatile biomarkers of quartz-induced lung injury using a lung alveolar cell model. We exposed the human alveolar A549 cell line to 0, 200, and 500 μg/mL quartz particles for 24 h and used gas chromatography-mass spectrometry to measure the volatile metabolites in the headspace air of cells. We identified ten volatile metabolites that had concentration-response relationships with particles exposure, including 1,2,4-oxadiazole, 5-(4-nitrophenyl)-3-phenyl- (CAS: 28825-12-9), 2,6-dimethyl-6-trifluoroacetoxyoctane (CAS: 61986-67-2), 3-buten-1-amine, N,N-dimethyl- (CAS: 55831-89-5), 2-propanol, 2-methyl- (CAS: 75-65-0), glycolaldehyde dimethyl acetal (CAS: 30934-97-5), propanoic acid, 2-oxo-, ethyl ester (CAS: 617-35-6), octane (CAS: 111-65-9), octane, 3,3-dimethyl- (CAS: 4110-44-5), heptane, 2,3-dimethyl- (CAS: 3074-71-3) and ethanedioic acid, bis(trimethylsilyl) ester (CAS: 18294-04-7). The volatile biomarkers are generated through the pathways of propanoate and nitrogen metabolism. The volatile biomarkers of the alkanes and methylated alkanes are related to oxidative and lipid peroxidation of the cell membrane. The lung alveolar cell model has the potential to explore the volatile biomarkers of particulate-induced lung injury.
Identifiants
pubmed: 32973288
doi: 10.1038/s41598-020-72825-7
pii: 10.1038/s41598-020-72825-7
pmc: PMC7515894
doi:
Substances chimiques
Biomarkers
0
Particulate Matter
0
Volatile Organic Compounds
0
Quartz
14808-60-7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15700Références
World Health Organization. Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health . Accessed 13 Aug 2020.
Cox, C. W., Rose, C. S. & Lynch, D. A. State of the art: Imaging of occupational lung disease. Radiology 270, 681–696. https://doi.org/10.1148/radiol.13121415 (2014).
doi: 10.1148/radiol.13121415
pubmed: 24568704
Mansurova, M., Ebert, B. E., Blank, L. M. & Ibanez, A. J. A breath of information: The volatilome. Curr. Genet. 64, 959–964. https://doi.org/10.1007/s00294-017-0800-x (2018).
doi: 10.1007/s00294-017-0800-x
pubmed: 29279954
Borlaza, L. J. S. et al. Oxidative potential of fine ambient particles in various environments. Environ. Pollut. 243, 1679–1688. https://doi.org/10.1016/j.envpol.2018.09.074 (2018).
doi: 10.1016/j.envpol.2018.09.074
pubmed: 30300873
Kelly, F. J. & Fussell, J. C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039 (2012).
doi: 10.1016/j.atmosenv.2012.06.039
Yin, H. Y., Xu, L. B. & Porter, N. A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 111, 5944–5972. https://doi.org/10.1021/cr200084z (2011).
doi: 10.1021/cr200084z
pubmed: 21861450
Chen, P. C., Peng, H. Y., Chang, C. J. & Yang, H. Y. Diagnostic accuracy of breath tests for pneumoconiosis using an electronic nose. J. Breath Res. https://doi.org/10.1088/1752-7163/aa857d (2017).
doi: 10.1088/1752-7163/aa857d
pubmed: 28795953
Yang, H. Y., Shie, R. H., Chang, C. J. & Chen, P. C. Development of breath test for pneumoconiosis: A case-control study. Respir. Res. 18, 178. https://doi.org/10.1186/s12931-017-0661-3 (2017).
doi: 10.1186/s12931-017-0661-3
pubmed: 29041938
pmcid: 5645979
Filipiak, W. et al. A compendium of volatile organic compounds (VOCs) released by human cell lines. Curr. Med. Chem. 23, 2112–2131. https://doi.org/10.2174/0929867323666160510122913 (2016).
doi: 10.2174/0929867323666160510122913
pubmed: 27160536
pmcid: 5086670
Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395. https://doi.org/10.1186/1471-2105-11-395 (2010).
doi: 10.1186/1471-2105-11-395
Xi, B., Gu, H., Baniasadi, H. & Raftery, D. Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol. Biol. 1198, 333–353. https://doi.org/10.1007/978-1-4939-1258-2_22 (2014).
doi: 10.1007/978-1-4939-1258-2_22
pubmed: 25270940
pmcid: 4319703
Van der Paal, J., Neyts, E. C., Verlackt, C. C. W. & Bogaerts, A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498. https://doi.org/10.1039/c5sc02311d (2016).
doi: 10.1039/c5sc02311d
pubmed: 28791102
Eckl, P. M. & Bresgen, N. Genotoxicity of lipid oxidation compounds. Free Radic. Biol. Med. 111, 244–252. https://doi.org/10.1016/j.freeradbiomed.2017.02.002 (2017).
doi: 10.1016/j.freeradbiomed.2017.02.002
pubmed: 28167130
Calenic, B. et al. Oxidative stress and volatile organic compounds: interplay in pulmonary, cardio-vascular, digestive tract systems and cancer. Open Chem. 13, 1020–1030. https://doi.org/10.1515/chem-2015-0105 (2015).
doi: 10.1515/chem-2015-0105
Phillips, M. et al. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J. Lab. Clin. Med. 136, 243–249. https://doi.org/10.1067/mlc.2000.108943 (2000).
doi: 10.1067/mlc.2000.108943
pubmed: 10985503
Phillips, M. et al. Effect of oxygen on breath markers of oxidative stress. Eur. Respir. J. 21, 48–51. https://doi.org/10.1183/09031936.02.00053402 (2003).
doi: 10.1183/09031936.02.00053402
pubmed: 12570108
Filipiak, W. et al. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 8, 17. https://doi.org/10.1186/1475-2867-8-17 (2008).
doi: 10.1186/1475-2867-8-17
pubmed: 19025629
pmcid: 2639533
Tang, H. et al. Determination of volatile organic compounds exhaled by cell lines derived from hematological malignancies. Biosci. Rep. https://doi.org/10.1042/BSR20170106 (2017).
doi: 10.1042/BSR20170106
pubmed: 29187583
pmcid: 5741829
Li, Y., Li, J. H. & Xu, H. Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell. RSC Adv. 7, 11959–11968. https://doi.org/10.1039/c6ra25453e (2017).
doi: 10.1039/c6ra25453e
Chen, X. et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 110, 835–844. https://doi.org/10.1002/cncr.22844 (2007).
doi: 10.1002/cncr.22844
pubmed: 17599760
Filipiak, W. et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol. Biomark. Prev. 19, 182–195. https://doi.org/10.1158/1055-9965.EPI-09-0162 (2010).
doi: 10.1158/1055-9965.EPI-09-0162
Sponring, A. et al. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark. 7, 153–161. https://doi.org/10.3233/CBM-2010-0182 (2010).
doi: 10.3233/CBM-2010-0182
pubmed: 21263191
Dettmer, K. & Hammock, B. D. Metabolomics—A new exciting field within the “omics” sciences. Environ. Health Perspect. 112, A396–A397 (2004).
doi: 10.1289/ehp.112-1241997
van der Schee, M. P. et al. Breathomics in lung disease. Chest 147, 224–231. https://doi.org/10.1378/chest.14-0781 (2015).
doi: 10.1378/chest.14-0781
pubmed: 25560860
Pleil, J., Beauchamp, J. & Miekisch, W. Cellular respiration, metabolomics and the search for illicit drug biomarkers in breath: Report from PittCon 2017. J. Breath Res. 11, 039001. https://doi.org/10.1088/1752-7163/aa7174 (2017).
doi: 10.1088/1752-7163/aa7174
pubmed: 28776507
pmcid: 6146967
Hakim, M. et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112, 5949–5966. https://doi.org/10.1021/cr300174a (2012).
doi: 10.1021/cr300174a
pubmed: 22991938
Buszewski, B., Kesy, M., Ligor, T. & Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 21, 553–566. https://doi.org/10.1002/bmc.835 (2007).
doi: 10.1002/bmc.835
pubmed: 17431933
Bikov, A. et al. Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer. BMC Pulm. Med. 14, 202. https://doi.org/10.1186/1471-2466-14-202 (2014).
doi: 10.1186/1471-2466-14-202
pubmed: 25510554
pmcid: 4289562
Qiu, X. H., Cao, L. & Han, R. C. Analysis of volatile components in different ophiocordyceps sinensis and insect host products. Molecules https://doi.org/10.3390/molecules25071603 (2020).
doi: 10.3390/molecules25071603
pubmed: 32806745
pmcid: 7435583
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361. https://doi.org/10.1093/nar/gkw1092 (2017).
doi: 10.1093/nar/gkw1092
pubmed: 27899662
Lubes, G. & Goodarzi, M. GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 147, 313–322. https://doi.org/10.1016/j.jpba.2017.07.013 (2018).
doi: 10.1016/j.jpba.2017.07.013
pubmed: 28750734
Styczynski, M. P. et al. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem. 79, 966–973. https://doi.org/10.1021/ac0614846 (2007).
doi: 10.1021/ac0614846
pubmed: 17263323
Smolinska, A. et al. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 8, 027105. https://doi.org/10.1088/1752-7155/8/2/027105 (2014).
doi: 10.1088/1752-7155/8/2/027105
pubmed: 24713999
Koh, Y., Pasikanti, K. K., Yap, C. W. & Chan, E. C. Y. Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J. Chromatogr. A 1217, 8308–8316. https://doi.org/10.1016/j.chroma.2010.10.101 (2010).
doi: 10.1016/j.chroma.2010.10.101
pubmed: 21081237
Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C. & Hankemeier, T. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics 7, 307–328. https://doi.org/10.1007/s11306-010-0254-3 (2011).
doi: 10.1007/s11306-010-0254-3
pubmed: 21949491
Kwak, J. et al. Volatile biomarkers from human melanoma cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 931, 90–96. https://doi.org/10.1016/j.jchromb.2013.05.007 (2013).
doi: 10.1016/j.jchromb.2013.05.007
pubmed: 23770738
Lopes-Pacheco, M., Bandeira, E. & Morales, M. M. Cell-based therapy for silicosis. Stem Cells Int. 5091838–5091838, 2016. https://doi.org/10.1155/2016/5091838 (2016).
doi: 10.1155/2016/5091838
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221. https://doi.org/10.1007/s11306-007-0082-2 (2007).
doi: 10.1007/s11306-007-0082-2
pubmed: 24039616
pmcid: 3772505
Petavratzi, E., Kingman, S. & Lowndes, I. Particulates from mining operations: A review of sources, effects and regulations. Miner. Eng. 18, 1183–1199. https://doi.org/10.1016/j.mineng.2005.06.017 (2005).
doi: 10.1016/j.mineng.2005.06.017
Darquenne, C. Aerosol deposition in health and disease. J. Aerosol. Med. Pulm. Drug Deliv. 25, 140–147. https://doi.org/10.1089/jamp.2011.0916 (2012).
doi: 10.1089/jamp.2011.0916
pubmed: 22686623
pmcid: 3417302
Davies, C. N. Particle–fluid interaction. J. Aerosol. Sci. 10, 477–513. https://doi.org/10.1016/0021-8502(79)90006-5 (1979).
doi: 10.1016/0021-8502(79)90006-5
Chiang, L. L. et al. Serum protein oxidation by diesel exhaust particles: Effects on oxidative stress and inflammatory response in vitro. Chem. Biol. Interact. 206, 385–393. https://doi.org/10.1016/j.cbi.2013.10.013 (2013).
doi: 10.1016/j.cbi.2013.10.013
pubmed: 24161433
Lin, W., Huang, Y. W., Zhou, X. D. & Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217, 252–259. https://doi.org/10.1016/j.taap.2006.10.004 (2006).
doi: 10.1016/j.taap.2006.10.004
pubmed: 17112558
Patel, M. M., Chillrud, S. N., Deepti, K. C., Ross, J. M. & Kinney, P. L. Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ. Res. 121, 71–78. https://doi.org/10.1016/j.envres.2012.10.012 (2013).
doi: 10.1016/j.envres.2012.10.012
pubmed: 23177171
Qu, S., Liberda, E. N., Qu, Q. S. & Chen, L. C. In vitro assessment of the inflammatory response of respiratory endothelial cells exposed to particulate matter. J. Toxicol. Environ. Health Part A 73, 1113–1121. https://doi.org/10.1080/15287394.2010.484335 (2010).
doi: 10.1080/15287394.2010.484335
pubmed: 20574913
Kalluri, U., Naiker, M. & Myers, M. A. Cell culture metabolomics in the diagnosis of lung cancer-the influence of cell culture conditions. J. Breath Res. 8, 027109. https://doi.org/10.1088/1752-7155/8/2/027109 (2014).
doi: 10.1088/1752-7155/8/2/027109
pubmed: 24861817
Hayashi, S. et al. A novel application of metabolomics in vertebrate development. Biochem. Biophys. Res. Commun. 386, 268–272. https://doi.org/10.1016/j.bbrc.2009.06.041 (2009).
doi: 10.1016/j.bbrc.2009.06.041
pubmed: 19523925