Collective photonic response of high refractive index dielectric metasurfaces.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 Sep 2020
Historique:
received: 19 01 2020
accepted: 28 08 2020
entrez: 25 9 2020
pubmed: 26 9 2020
medline: 26 9 2020
Statut: epublish

Résumé

Sub-wavelength periodic nanostructures give rise to interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such structures are usually metallic which results in high dissipative losses and limitations for use; therefore, dielectric nanostructures are increasingly considered as a strong alternative to plasmonic (metallic) materials. In this work, we show light-matter interaction in a high refractive index dielectric metasurface consisting of an array of cubic dielectric nano-structures made of very high refractive index material, Te in air, using computer modelling. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the near-field coupling of the field modes from neighboring dielectric structures followed by a sharp peak in the transmission at higher frequencies. From the spatial distribution of the electric and magnetic fields and a detailed multipole analysis in both spherical harmonics and Cartesian components, the dominant resonant modes are identified to be electric and magnetic dipoles. Specifically at lower frequency (60 THz) a novel anapole-like state characterized by strong-suppression in reflection and absorption is observed, reported very recently as 'lattice-invisibility' state. Differently, at higher frequency (62 THz), strong absorption and near-zero far field scattering are observed, which combined with the field profiles and the multipole analysis of the near-fields indicate the excitation of an anapole. Notably the observed novel modes occur in the simple geometry of dielectric cubes and are a result of collective response of the metasurfaces. Periodicity of the cubic metasurface is shown as the significant material tuning parameter, allowing for the near-field and far-field coupling effects of anapole metasurface. More generally, our work is a contribution towards developing far-fetching applications based on metamaterials such as integrated devices and waveguides consisting of non-radiating modes.

Identifiants

pubmed: 32973257
doi: 10.1038/s41598-020-72675-3
pii: 10.1038/s41598-020-72675-3
pmc: PMC7518431
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15599

Subventions

Organisme : Javna Agencija za Raziskovalno Dejavnost RS
ID : P1-0099
Organisme : Science and Engineering Research Board,India
ID : EMR/2017/004045

Références

Huo, P. et al. Hyperbolic metamaterials and metasurfaces fundamentals and applications. Adv. Optical Mater. 7, 1801616 (2019).
doi: 10.1002/adom.201801616
Bukhari, S. S., Vardaxoglou, J. & Whittow, W. A metasurfaces review: Definitions and applications. Appl. Sci. 9, 2727 (2019).
doi: 10.3390/app9132727
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of [Formula: see text] and [Formula: see text]. Sov. Phys. Usp. 10, 509–514 (1968).
doi: 10.1070/PU1968v010n04ABEH003699
Landy, N. I. et al. Perfect metamaterial absorber. Phys. Rev. Lett 100, 207402 (2008).
pubmed: 18518577 doi: 10.1103/PhysRevLett.100.207402
Liu, S. et al. Optical magnetic mirrors with out metals. Optica 1, 250 (2014).
doi: 10.1364/OPTICA.1.000250
Moitra, P. et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).
doi: 10.1021/acsphotonics.5b00148
Yoo, S. & Park, Q.-H. Metamaterials and chiral sensing: A review of fundamentals and applications. Nanophotonics 8(2), 249–261 (2019).
doi: 10.1515/nanoph-2018-0167
Zhang, X. & Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008).
pubmed: 18497850 doi: 10.1038/nmat2141
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett 85, 3966 (2000).
pubmed: 11041972 doi: 10.1103/PhysRevLett.85.3966
Zhao, Q. et al. Mie resonance based dielectric metamaterials. Mater. Today 12, 12 (2009).
doi: 10.1016/S1369-7021(09)70318-9
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, 6314 (2016).
doi: 10.1126/science.aag2472
Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).
pubmed: 26740041 doi: 10.1038/nnano.2015.304
Fu, Y. H. et al. Directional visible light scattering by silicon nanoparticles. Nat. Comm. 4, 1527 (2013).
doi: 10.1038/ncomms2538
Lukyanchuk, B. S. et al. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photon. 2, 993–999 (2015).
doi: 10.1021/acsphotonics.5b00261
Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B. 84, 235429 (2011).
doi: 10.1103/PhysRevB.84.235429
van de Haar, M. A. et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. Opt. Express 24, 2047–2064 (2016).
pubmed: 26906780 doi: 10.1364/OE.24.002047
Zhang, J., MacDonald, K. F. & Zheludev, N. I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).
pubmed: 24216893 doi: 10.1364/OE.21.026721
Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett 108, 097402 (2012).
pubmed: 22463666 doi: 10.1103/PhysRevLett.108.097402
Liu, W. et al. Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22, 16178 (2014).
pubmed: 24977869 doi: 10.1364/OE.22.016178
Tsuchimoto, Y. et al. Fano resonant all-dielectric core/shell nanoparticles with ultrahigh scattering directionality in the visible region. Opt. Express 24, 14451 (2016).
pubmed: 27410598 doi: 10.1364/OE.24.014451
Campione, S. et al. Tailoring dielectric resonator geometries for directional scattering and Huygens metasurfaces. Opt. Express 23(3), 2293–2307 (2015).
pubmed: 25836097 doi: 10.1364/OE.23.002293
Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824 (2013).
pubmed: 23952969 doi: 10.1021/nn402736f
Sikdar, D. et al. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J. Appl. Phys 117, 083101 (2015).
doi: 10.1063/1.4907536
Yi, N. et al. Large-scale and defect-free silicon metamaterials with magnetic response. Sci. Rep. 6, 25760 (2016).
pubmed: 27194105 pmcid: 4872140 doi: 10.1038/srep25760
Zhang, F. et al. Magnetic and electric coupling effects of dielectric metamaterial. N. J. Phys. 14, 033031 (2012).
doi: 10.1088/1367-2630/14/3/033031
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).
doi: 10.1002/9783527618156
Amanaganti, S., & D. R. Chowdhury, et. al. Electromagnetic response of dielectric nanostructures in liquid crystals. Proc. SPIE Emerging Liquid Crystal Technologies XIII, 105551F (2018).
Terekhov, P. D. et al. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 99, 045424 (2019).
doi: 10.1103/PhysRevB.99.045424
Shamkhi, H. K. et al. Transverse scattering and generalized Kerker effects in all-dielectric mie-resonant metaoptics. Phys. Rev. Lett 122, 193905 (2019).
pubmed: 31144914 doi: 10.1103/PhysRevLett.122.193905
Terekhov, P. D. et al. Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation. Sci. Rep. 9, 3438 (2019).
pubmed: 30837620 pmcid: 6401002 doi: 10.1038/s41598-019-40226-0
Yang, X. et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution. Sci. Rep. 7, 3190 (2017).
pubmed: 28600537 pmcid: 5466680 doi: 10.1038/s41598-017-03439-9
Zhu, X. et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017).
pubmed: 28508062 pmcid: 5419704 doi: 10.1126/sciadv.1602487
Yang, Y. et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5713 (2014).
doi: 10.1038/ncomms6713
Chen, X. et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004).
doi: 10.1103/PhysRevE.70.016608
Jackson, J. D. Classical Electrodynamics 3rd edn. (Wiley, New York, 1999).
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).
pubmed: 26311109 pmcid: 4560796 doi: 10.1038/ncomms9069
Yang, Y. & Bozhevolnyi, S. I. Nonradiating anapole states in nanophotonics: From fundamentals to applications. Nanotechnology 30, 204001 (2019).
pubmed: 30695763 doi: 10.1088/1361-6528/ab02b0
Fedotov, R. T. et al. Exciting dynamic anapoles with electromagnetic doughnut pulses. Appl. Phys. Lett. 111, 081104 (2017).
doi: 10.1063/1.4999368
Lamprianidis, A. G. & Miroshnichenko, A. E. Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams. J. Nanotechnol. 9, 1478 (2018).
Feng, T. et al. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett. 41, 5011 (2016).
pubmed: 27805673 doi: 10.1364/OL.41.005011
Regmi, B. R. et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett. 16, 5143 (2016).
pubmed: 27399057 doi: 10.1021/acs.nanolett.6b02076
Baryshnikova, K. et al. Giant magneto-electric field separation via near-field interference on anapole-like states. Phys. Rev. B 98, 165419 (2018).
doi: 10.1103/PhysRevB.98.165419
Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369 (2011).
pubmed: 21331038 doi: 10.1038/nature09776
Jing, X. et al. Design of ultrahigh refractive index metamaterials in the terahertz regime. Superlattices 109, 716 (2017).
doi: 10.1016/j.spmi.2017.05.061
Fang, B. et al. Numerical investigation of terahertz polarization-independent multiband ultrahigh refractive index metamaterial by bilayer metallic rectangular ring structure. RSC Adv. 8, 22361 (2018).
doi: 10.1039/C8RA03758B
Yoo, S. et al. Causal homogenization of metamaterials. Nanophotonics 8, 6 (2019).
Zografopoulos, D. C. et al. Toroidal metasurface resonances in microwave waveguides. Sci. Rep. 9, 7544 (2019).
pubmed: 31101841 pmcid: 6525168 doi: 10.1038/s41598-019-44093-7

Auteurs

Sushanth Reddy Amanaganti (SR)

Mahindra Ecole Centrale, Hyderabad, India.

Miha Ravnik (M)

Faculty of Mathematics and Physics, University of Ljubljana, 1000, Ljubljana, Slovenia.
J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.

Jayasri Dontabhaktuni (J)

Mahindra Ecole Centrale, Hyderabad, India. jayasri.d@mechyd.ac.in.

Classifications MeSH