Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome.

Auditory perception Autism spectrum disorder Brain/physiopathology CGaMP Calcium imaging Fragile X syndrome Graph theory Light-sheet microscopy Sensory systems Zebrafish

Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
16 09 2020
Historique:
received: 15 07 2020
accepted: 26 08 2020
entrez: 17 9 2020
pubmed: 18 9 2020
medline: 5 6 2021
Statut: epublish

Résumé

Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS. The purpose of this study was to model the alterations of sensory networks, brain-wide and at cellular resolution, that underlie the sensory aspects of FXS and autism. Combining functional analyses with the neurons' anatomical positions, we found that fmr1 We demonstrated that fmr1

Sections du résumé

BACKGROUND
Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS. The purpose of this study was to model the alterations of sensory networks, brain-wide and at cellular resolution, that underlie the sensory aspects of FXS and autism.
RESULTS
Combining functional analyses with the neurons' anatomical positions, we found that fmr1
CONCLUSIONS
We demonstrated that fmr1

Identifiants

pubmed: 32938458
doi: 10.1186/s12915-020-00857-6
pii: 10.1186/s12915-020-00857-6
pmc: PMC7493858
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

125

Subventions

Organisme : Simons Foundation
ID : 399432
Pays : International
Organisme : NINDS NIH HHS
ID : RF1 NS118406
Pays : United States
Organisme : Simons Foundation
ID : 625793
Pays : International
Organisme : National Health and Medical Research Council
ID : APP1066887
Pays : International
Organisme : Australian Research Council
ID : DP110103612
Pays : International
Organisme : Australian Research Council
ID : DP140102036
Pays : International

Références

Front Neurosci. 2012 May 07;6:64
pubmed: 22586363
Pediatrics. 2017 Jun;139(Suppl 3):S194-S206
pubmed: 28814540
J Child Psychol Psychiatry. 2019 Mar;60(3):314-324
pubmed: 30350375
Nat Methods. 2015 Nov;12(11):1039-46
pubmed: 26778924
Nat Methods. 2013 May;10(5):413-20
pubmed: 23524393
Nat Neurosci. 2013 Jul;16(7):903-9
pubmed: 23727819
Nat Neurosci. 2015 Feb;18(2):302-9
pubmed: 25599222
JAMA Psychiatry. 2013 Aug;70(8):869-79
pubmed: 23803651
Neuroimage. 2012 Feb 1;59(3):2142-54
pubmed: 22019881
Curr Biol. 2018 Dec 3;28(23):3711-3722.e3
pubmed: 30449665
Neuroimage Clin. 2015 Mar 06;7:732-41
pubmed: 25844325
Curr Biol. 2016 Mar 21;26(6):743-54
pubmed: 26923787
JAMA Psychiatry. 2015 Aug;72(8):767-77
pubmed: 26061743
Front Psychiatry. 2019 Apr 16;10:252
pubmed: 31057443
Neurosci Biobehav Rev. 2012 Jan;36(1):604-25
pubmed: 21963441
Cell Rep. 2013 Nov 14;5(3):567-72
pubmed: 24210815
J Neurosci. 2014 Feb 26;34(9):3413-8
pubmed: 24573297
J Neurosci. 2020 May 20;40(21):4130-4144
pubmed: 32277044
Brain Topogr. 2003 Spring;15(3):165-71
pubmed: 12705812
J Comp Neurol. 2017 Oct 1;525(14):3031-3043
pubmed: 28599354
Sci Rep. 2016 Oct 07;6:34887
pubmed: 27713561
Clin Neurophysiol. 2012 Jul;123(7):1309-18
pubmed: 22192499
Mol Psychiatry. 2004 Jul;9(7):646-63
pubmed: 15037868
Neuron. 2016 Jan 20;89(2):285-99
pubmed: 26774160
J Biophotonics. 2018 Dec;11(12):e201800088
pubmed: 29920963
Neuroimage Clin. 2012 Nov 16;2:79-94
pubmed: 24179761
J Comp Neurol. 1984 Dec 20;230(4):536-51
pubmed: 6520250
Nature. 2013 Jul 18;499(7458):295-300
pubmed: 23868258
FASEB J. 2020 Mar;34(3):3501-3518
pubmed: 32039504
Autism Res. 2019 Jul;12(7):1022-1031
pubmed: 31025832
J Neurophysiol. 2015 May 1;113(9):3375-85
pubmed: 25717162
Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Jan;2(1):76-84
pubmed: 28584881
PLoS One. 2009 Nov 19;4(11):e7910
pubmed: 19936290
Mol Psychiatry. 2014 Jun;19(6):659-67
pubmed: 23774715
PLoS Comput Biol. 2010 Apr 22;6(4):e1000748
pubmed: 20421990
Optom Vis Sci. 2000 Nov;77(11):592-9
pubmed: 11138833
Harv Rev Psychiatry. 2015 Jul-Aug;23(4):223-44
pubmed: 26146755
J Neurophysiol. 2008 Nov;100(5):2615-26
pubmed: 18784272
Brain. 2013 Jun;136(Pt 6):1942-55
pubmed: 23739917
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
Neuron. 2018 Jul 25;99(2):293-301.e4
pubmed: 29983325
Neurosci Biobehav Rev. 2017 May;76(Pt B):235-253
pubmed: 27235081
PLoS One. 2013;8(3):e51456
pubmed: 23536755
Am J Psychiatry. 2019 Dec 1;176(12):1010-1020
pubmed: 31230465
Front Hum Neurosci. 2010 Mar 02;4:12
pubmed: 20224809
Curr Opin Neurobiol. 2018 Jun;50:136-145
pubmed: 29486425
Nat Neurosci. 2014 Dec;17(12):1701-9
pubmed: 25383903
Neuroreport. 2001 Aug 8;12(11):2573-6
pubmed: 11496151
PLoS Genet. 2015 Dec 04;11(12):e1005702
pubmed: 26637167
Front Neural Circuits. 2019 Sep 26;13:57
pubmed: 31616256
Brain. 2004 Mar;127(Pt 3):591-601
pubmed: 14736752
J Neurosci Methods. 2017 Nov 1;291:83-94
pubmed: 28782629
Am J Hum Genet. 1995 Nov;57(5):1006-18
pubmed: 7485149
Sci Adv. 2015 Nov 20;1(10):e1500775
pubmed: 26702437
Brain. 2015 May;138(Pt 5):1382-93
pubmed: 25795704
Biol Psychol. 2020 Jan;149:107807
pubmed: 31693923
Cereb Cortex. 2011 Oct;21(10):2233-43
pubmed: 21378114
Cell Rep. 2013 Nov 14;5(3):738-47
pubmed: 24210821
Neural Comput. 2018 Aug;30(8):2210-2244
pubmed: 29894651
Cereb Cortex. 2012 Jun;22(6):1333-42
pubmed: 21856714
Brain Struct Funct. 2014 Sep;219(5):1555-73
pubmed: 23733175
Neurology. 2004 Nov 9;63(9):1634-9
pubmed: 15534248
J Neurosci. 2019 Jun 12;39(24):4797-4813
pubmed: 30936239

Auteurs

Lena Constantin (L)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.

Rebecca E Poulsen (RE)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.

Leandro A Scholz (LA)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.

Itia A Favre-Bulle (IA)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia.

Michael A Taylor (MA)

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.

Biao Sun (B)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.

Geoffrey J Goodhill (GJ)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia.

Gilles C Vanwalleghem (GC)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia. g.vanwalleghem@uq.edu.au.

Ethan K Scott (EK)

Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia. ethan.scott@uq.edu.au.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH