Strong σ-Hole Activation on Icosahedral Carborane Derivatives for a Directional Halide Recognition.

carborane chalcogen bonding crystal engineering halogen bonding sigma-hole interaction

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
04 Jan 2021
Historique:
received: 30 07 2020
pubmed: 15 9 2020
medline: 15 9 2020
entrez: 14 9 2020
Statut: ppublish

Résumé

Crystal engineering based on σ-hole interactions is an emerging approach for realization of new materials with higher complexity. Neutral inorganic clusters derived from 1,2-dicarba-closo-dodecaborane, substituted with -SeMe, -TeMe, and -I moieties on both skeletal carbon vertices are experimentally demonstrated herein as outstanding chalcogen- and halogen-bond donors. In particular, these new molecules strongly interact with halide anions in the solid-state. The halide ions are coordinated by one or two donor groups (μ

Identifiants

pubmed: 32926491
doi: 10.1002/anie.202010462
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

366-370

Subventions

Organisme : Agence Nationale de la Recherche
ID : ANR 17-ERC3-0003
Organisme : Campus France
ID : PHC STAR 41595RK
Organisme : National Research Foundation of Korea
ID : NRF-2018K1A3A1A21043478
Organisme : Région Bretagne (FR)
ID : ARED
Organisme : EXPLOR mesocentre (FR)
ID : 2019CPMXX0984/wbg13

Informations de copyright

© 2020 Wiley-VCH GmbH.

Références

G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engineering, World Scientific Publishing, Singapore, 2011;
C. R. Laramy, M. N. O'Brien, C. A. Mirkin, Nat. Rev. Mater. 2019, 4, 201;
R. R. Knowles, E. N. Jacobsen, Proc. Natl. Acad. Sci. USA 2010, 107, 20678;
O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511;
K. Biradha, R. Santra, Chem. Soc. Rev. 2013, 42, 950;
A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281;
E. Mattia, S. Otto, Nat. Nanotechnol. 2015, 10, 111;
N. Blagden, M. de Matas, P. T. Gavan, P. York, Adv. Drug Delivery Rev. 2007, 59, 617;
C. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev. 2018, 47, 422.
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118.
M. S. Taylor, Coord. Chem. Rev. 2020, 413, 213270.
C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F. Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, G. Resnati, Pure Appl. Chem. 2019, 91, 1889;
S. Benz, A. I. Poblador-Bahamonde, N. Low-Ders, S. Matile, Angew. Chem. Int. Ed. 2018, 57, 5408;
Angew. Chem. 2018, 130, 5506.
P. Scilabra, G. Terraneo, G. Resnati, Acc. Chem. Res. 2019, 52, 1313.
N. Biot, D. Bonifazi, Coord. Chem. Rev. 2020, 413, 213243.
M. Fourmigué, A. Dhaka, Coord. Chem. Rev. 2020, 403, 213084.
G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, Cryst. Growth Des. 2014, 14, 2697.
 
A. F. Cozzolino, P. J. W. Elder, I. Vargas-Baca, Coord. Chem. Rev. 2011, 255, 1426;
A. F. Cozzolino, J. F. Britten, I. Vargas-Baca, Cryst. Growth Des. 2006, 6, 181;
A. F. Cozzolino, I. Vargas-Baca, S. Mansour, A. H. Mahmoudkhani, J. Am. Chem. Soc. 2005, 127, 3184;
A. F. Cozzolino, Q. Yang, I. Vargas-Baca, Cryst. Growth Des. 2010, 10, 4959;
G. E. Garrett, G. L. Gibson, R. N. Straus, D. S. Seferos, M. S. Taylor, J. Am. Chem. Soc. 2015, 137, 4126.
L.-J. Riwar, N. Trapp, K. Root, R. Zenobi, F. Diederich, Angew. Chem. Int. Ed. 2018, 57, 17259;
Angew. Chem. 2018, 130, 17506.
A. Kremer, A. Fermi, N. Biot, J. Wouters, D. Bonifazi, Chem. Eur. J. 2016, 22, 5665.
 
P. C. Ho, P. Szydlowski, J. Sinclair, P. J. W. Elder, J. Kübel, C. Gendy, L. M. Lee, H. Jenkins, J. F. Britten, D. R. Morim, I. Vargas-Baca, Nat. Commun. 2016, 7, 11299;
P. C. Ho, J. Rafique, J. Lee, L. M. Lee, H. A. Jenkins, J. F. Britten, A. L. Braga, I. Vargas-Baca, Dalton Trans. 2017, 46, 6570.
M. Brezgunova, J. Lieffrig, E. Aubert, S. Dahaoui, P. Fertey, S. Lebègue, J. Angyan, M. Fourmigué, E. Espinosa, Cryst. Growth Des. 2013, 13, 3283.
K. Eichstaedt, A. Wasilewska, B. Wicher, M. Gdaniec, T. Połoński, Cryst. Growth Des. 2016, 16, 1282;
N. Biot, D. Bonifazi, Chem. Eur. J. 2020, 26, 2904.
 
P. Wonner, L. Vogel, M. Düser, L. Gomes, F. Kniep, B. Mallick, D. B. Werz, S. M. Huber, Angew. Chem. Int. Ed. 2017, 56, 12009;
Angew. Chem. 2017, 129, 12172;
P. Wonner, L. Vogel, F. Kniep, S. M. Huber, Chem. Eur. J. 2017, 23, 16972;
P. Wonner, A. Dreger, L. Vogel, E. Engelage, S. M. Huber, Angew. Chem. Int. Ed. 2019, 58, 16923;
Angew. Chem. 2019, 131, 17079;
P. Wonner, T. Steinke, L. Vogel, S. M. Huber, Chem. Eur. J. 2020, 26, 1258.
 
J. Y. C. Lim, I. Marques, A. L. Thompson, K. E. Christensen, V. Félix, P. D. Beer, J. Am. Chem. Soc. 2017, 139, 3122;
J. Y. C. Lim, J. Y. Liew, P. D. Beer, Chem. Eur. J. 2018, 24, 14560;
A. Borissov, I. Marques, J. Y. C. Lim, V. Félix, M. D. Smith, P. D. Beer, J. Am. Chem. Soc. 2019, 141, 4119;
T. Bunchuay, A. Docker, U. Eiamprasert, P. Surawatanawong, A. Brown, P. Beer, Angew. Chem. Int. Ed. 2020, 59, 12007;
Angew. Chem. 2020, 132, 12105.
G. E. Garrett, E. I. Carrera, D. S. Seferos, M. S. Taylor, Chem. Commun. 2016, 52, 9881.
N. A. Semenov, D. E. Gorbunov, M. V. Shakhova, G. E. Salnikov, I. Y. Bagryanskaya, V. V. Korolev, J. Beckmann, N. P. Gritsan, A. V. Zibarev, Chem. Eur. J. 2018, 24, 12983.
 
S. Benz, M. Macchione, Q. Verolet, J. Mareda, N. Sakai, S. Matile, J. Am. Chem. Soc. 2016, 138, 9093;
K. Strakova, L. Assies, A. Goujon, F. Piazzolla, H. V. Humeniuk, S. Matile, Chem. Rev. 2019, 119, 10977;
L. M. Lee, M. Tsemperouli, A. I. Poblador-Bahamonde, S. Benz, N. Sakai, K. Sugihara, S. Matile, J. Am. Chem. Soc. 2019, 141, 810.
W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 2009, 113, 8132;
E. Alikhani, F. Fuster, B. Madebene, G. J. Grabowski, Phys. Chem. Chem. Phys. 2014, 16, 2430;
D. J. Pascoe, K. B. Lin, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139, 15160.
P. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys. Chem. Chem. Phys. 2017, 19, 32166.
H.-T. Huynh, O. Jeannin, M. Fourmigué, Chem. Commun. 2017, 53, 8467;
O. Jeannin, H.-T. Huynh, A. M. S. Riel, M. Fourmigué, New J. Chem. 2018, 42, 10502;
V. Kumar, C. Leroy, D. L. Bryce, CrystEngComm 2018, 20, 6406;
A. M. S. Riel, H.-T. Huynh, O. Jeannin, O. Berryman, M. Fourmigué, Cryst. Growth Des. 2019, 19, 1418;
A. M. S. Riel, O. Jeannin, O. Berryman, M. Fourmigué, Acta Crystallogr. Sect. B 2019, 75, 34.
R. N. Grimes, Carboranes, Elservier, Amsterdam, 2011.
J. Aihara, J. Am. Chem. Soc. 1978, 100, 3339;
P. v. R. Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454;
Z. F. Chen, R. King, Chem. Rev. 2005, 105, 3613;
J. Poater, M. Solà, C. Viñas, F. Teixidor, Angew. Chem. Int. Ed. 2014, 53, 12191;
Angew. Chem. 2014, 126, 12387.
F. Teixidor, R. Núñez, C. Viñas, R. Sillanpää, R. Kivekäs, Angew. Chem. Int. Ed. 2000, 39, 4290;
Angew. Chem. 2000, 112, 4460;
F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Viñas, J. Am. Chem. Soc. 2005, 127, 10158;
A. M. Spokoyny, C. W. Machan, D. J. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy, C. L. Stern, A. A. Sarjeant, C. A. Mirkin, Nat. Chem. 2011, 3, 590.
 
R. Lo, J. Fanfrlík, M. Lepšík, P. Hobza, Phys. Chem. Chem. Phys. 2015, 17, 20814;
J. Fanfrlík, A. Přáda, Z. Padělková, A. Pecina, J. Macháček, M. Lepšík, J. Holub, A. Růžička, D. Hnyk, P. Hobza, Angew. Chem. Int. Ed. 2014, 53, 10139;
Angew. Chem. 2014, 126, 10303;
A. Pecina, M. Lepšík, D. Hnyk, P. Hobza, J. Fanfrlík, J. Phys. Chem. A 2015, 119, 1388;
J. Fanfrlík, J. Holub, Z. Růžičová, J. Řezáč, P. D. Lane, D. A. Wann, D. Hnyk, A. Růžička, P. Hobza, ChemPhysChem 2016, 17, 3373;
I. Alkorta, J. Elguero, J. M. Oliva-Enrich, Materials 2020, 13, 2163;
J. Fanfrlík, D. Hnyk, P. Hobza, Molecules 2019, 24, 2657.
 
J. M. Oliva, N. L. Allan, P. v. R. Schleyer, C. Viñas, F. Teixidor, J. Am. Chem. Soc. 2005, 127, 13538;
J. Llop, C. Viñas, J. M. Oliva, F. Teixidor, M. A. Flores, R. Kivekas, R. Sillanpää, J. Organomet. Chem. 2002, 657, 232;
J. Li, R. Pang, Z. Li, G. Lai, X.-Q. Xiao, T. Müller, Angew. Chem. Int. Ed. 2019, 58, 1397;
Angew. Chem. 2019, 131, 1411;
Y. Wu, J. Zhang, Z. Xie, Chin. Chem. Lett. 2019, 30, 1530.
 
B. Wrackmeyer, E. V. Klimkina, W. Milius, Eur. J. Inorg. Chem. 2011, 13, 2164;
M. Herberhold, W. Milius, G.-X. Jin, W. Kremnitz, B. Wrackmeyer, Z. Anorg. All. Chem. 2006, 632, 2031;
G. Barberà, A. Vaca, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Inorg. Chem. 2008, 47, 7309;
H. Ni, Z. Qiu, Z. Xie, Angew. Chem. Int. Ed. 2017, 56, 712;
Angew. Chem. 2017, 129, 730.
 
V. Kumar, Y. Xu, D. L. Bryce, Chem. Eur. J. 2020, 26, 3275;
CCDC (CSD version 5.41, November 2019) based search shows 12 structures, albeit not being studied in the frame of chalcogen bond interaction, where Te-containing molecules are all ionic. (REF: ATIDIQ, DIYDUL, GEGHUW, KIXCEZ, OCURIN, RADMUH, RADNES, RADNOC, WOHGIM, XEMMEJ, YETVID, YETVOJ);
D. B. Werz, R. Gleiter, F. Rominger, Organometallics 2015, 34, 5341;
J. Beckmann, P. Finke, S. Heitz, M. Hesse, Eur. J. Inorg. Chem. 2008, 1921;
J. Konu, T. Chivers, H. M. Tuononen, Chem. Commun. 2006, 1634;
H. Fleischer, D. Schollmeyer, Inorg. Chem. 2002, 41, 10678;
T. G. Do, E. Hupf, A. Nordheider, E. Lork, A. M. Z. Slawin, S. G. Makarov, S. Yu. Ketkov, S. Mebs, J. D. Woollins, J. Beckmann, Organometallics 2015, 34, 5341-5360;
P. Arsenyan, S. Lapcinska, A. Ivanova, J. Vasiljeva, Eur. J. Inorg. Chem. 2019, 4951;
A. V. Borisov, Zh. V. Matsulevich, B. K. Osmanov, G. N. Borisova, V. I. Naumov, G. Z. Mamedova, A. M. Magerramov, V. N. Khrustalev, V. V. Kachala, Russ. Chem. Bull. 2012, 61, 89;
K. Konu, T. Chivers, H. M. Tuononen, Inorg. Chem. 2006, 45, 10678.
CCDC (CSD version 5.41, November 2019) based search; J. Grebe, G. Geiseler, K. Harms, K. Dehnicke, Z. Naturforsch. B 1999, 54, 7.
P. Scilabra, J. S. Murray, G. Terraneo, G. Resnati, Cryst. Growth Des. 2019, 19, 1149; the calculation method in the reference is different with the one used in this paper, and the values reported here are those obtained using our calculation method. Note that the these values show marginal differences (up to ca. 2 %) with the reported ones. Details and comparisons with the reported data are described in the supporting information.
2039009, 2039010, 2039011, 2039012, 2039013, and 2039014 contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Auteurs

Maxime Beau (M)

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France.

Sunhee Lee (S)

Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea.

Sooyeon Kim (S)

Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea.

Won-Sik Han (WS)

Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea.

Olivier Jeannin (O)

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France.

Marc Fourmigué (M)

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France.

Emmanuel Aubert (E)

Laboratoire CRM2, UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.

Enrique Espinosa (E)

Laboratoire CRM2, UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.

Ie-Rang Jeon (IR)

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France.

Classifications MeSH