Production, characterization, and immobilization of protease from the yeast Rhodotorula oryzicola.
Celite 545
adsorption
immobilization
protease
reuse
silica gel
Journal
Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
pubmed:
13
9
2020
medline:
30
12
2021
entrez:
12
9
2020
Statut:
ppublish
Résumé
The protease was produced extracellularly in submerged fermentation by the yeast Rhodotorula oryzicola using different sources of nitrogen and maximum activity (6.54 × 10
Substances chimiques
Enzymes, Immobilized
0
Peptide Hydrolases
EC 3.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1033-1043Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado da Bahia
Organisme : CAPES
Organisme : CNPq
Organisme : Postgraduate Program in Biotechnology, UEFS
Informations de copyright
© 2020 International Union of Biochemistry and Molecular Biology, Inc.
Références
Kumar, V., Singh, D., Sangwan, P., and Gil, K. (2014) In: V Beniwal and A K. Sharma (Eds.), Industrial Enzymes: Trends, Scope and Relevance. Nova Science, Hauppauge, NY, pp. 173-196.
Kuddus, M. (2019) Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Academic Press, New York, p. 909.
Daiha, K. G., Brêda, G. C., Larentis, A. L., Freire, D. M. G., and Almeida, R. V. (2016) Braz. J. Sci. Technol. 3, 17. https://doi.org/10.1186/s40552-016-0029-0
Singh, R., Mittal, A., Kumar, M., and Mehta, P. K. (2016) J. Pharm. Chem. Biol. Sci. 4, 365-374.
Li, S., Yang, X., Yang, S., Zhu, M., and Wang, X. (2012) Compu. Struct. Biotechnol. J. 2, e201209017. https://doi.org/10.5936/csbj.201209017
Liu, L., Yang, H., and Shin, H. D. (2013) Bioengineered. 4, 212-223. https://doi.org/10.4161/bioe.24761
Choi, J. M., Han, S. S., and Kim, H. S. (2015) Biotechnol Adv. 33, 1443-1454. https://doi.org/10.1016/j.biotechadv.2015.02.014
Basso, A., and Serban, S. (2019) Mol. Catal. 479, 110607
Joutey, N. T., Bahafid, W., Sayel, H., and Ghachtouli, N. E. (2013) In: R. Chamy, F. Rosenkranz (Eds.), Biodegradation - Life of Science, InTech, Rijeka, Croatia, pp. 291-321. https://doi.org/10.5772/56194.
Barata, R. A., Andrade, M. H. G., and Rodrigues, R. D. (2002) J. Biosci. Bioeng. 94, 304-308. https://doi.org/10.1263/jbb.94.304
Kumar, S., Sharma, N. S., Saharan, M. R., and Singh, R. (2005) Process Biochem. 40, 1701-1705. https://doi.org/10.1016/j.procbio.2004.06.047
Adrio, J. L., and Demain, A. L (2014) Process. Biomol. 4, 117-139. https://doi.org/10.3390/biom4010117
Johnston, D. B, and Mcaloon, J. A. (2014) Bioresour. Technol. 154, 18-25. https://doi.org/10.1016/j.biortech.2013.11.043
Frazier, W. C., and Westhoff, D. C. (1988) Food Microbiology. 4 ed. McGraw-Hill International Edition, New York.
Mahajan, R. T., and Badgujar, S. B. (2010) J. Pharm. Res. 3, 2048-2068.
Zanphorlin, L. M, Cabral, H., Arantes, E.. Assis Juliano, D. L., Juliano, M. A., and Bonilla-Rodriguez, G. O. (2011) Process Biochem. 46, 2137-2143. https://doi.org/10.1016/j.procbio.2011.08.014
Żymańczyk-Duda, E., Brzezińska-Rodak, M., Klimek-Ochab, M., Duda, M., and Agata Zerka, A. (2017) In: Yeast: Industrial Applications, A. Morata and I. Loira (Eds.). IntechOpen, London. https://doi.org/10.5772/intechopen.70130
Kot, A. M., Błażejak, S., Kurcz, A., Gientka, I., and Kieliszek, M. (2016) Appl. Microbiol. Biotechnol. 100, 6103-6117. https://doi.org/10.1007/s00253-016-7611-8
Hernalsteens, S., and Maugeri, F. (2010) J. Food Biochem. 34, 520-534. https://doi.org/10.1111/j.1745-4514.2009.00295.x
Tasar, C. O. (2017) Biocatal. Biotransform. 35, 191-197. https://doi.org/10.1080/10242422.2017.1304386
Ünlu, A. E., and Takac, S. (2012) Artif. Cells Blood Substit. Immobil. Biotechnol. 40, 338-345. https://doi.org/10.3109/10731199.2012.668910
Wang, H., Peng, L., Wu, J., and Shi, G. (2015) Process Biochem. 50, 901-905. https://doi.org/10.1016/j.procbio.2015.03.004
Chaud, L. C. S., Lario, L. D., Bonugli-Santos, R. C. Sette, L. D., Pessoa Jr, A., and Felipe, A. (2016) New Biotechnol. 33, 807-814. https://doi.org/10.1016/j.nbt.2016.07.016
Neves, K. C. S., Porto, A. L. F., and Teixeira, M. F. S (2006) Acta Amaz. 36, 299-306. https://doi.org/10.1590/S0044-59672006000300002.
Vaz, A. B. M., Rosa, L. H., Vieira, M. L. A., Garcia Brandão, L. R., and Teixeira, L. C. R. S. (2011) Braz. J. Microbiol. 42, 937-947. https://doi.org/10.1590/S1517-83822011000300012
Duarte, A. W. F. Dayo-Owoyemi, I., Nobre, F. S., Pagnocca, F. C., Chaud, L. C. S. Pessoa, A., Felipe, M. G. A, and Sette, L. D. (2013) Extremophiles. 17, 1023-1035. https://doi.org/10.1007/s00792-013-0584-y
Liu, C. L., and Hatano, H. (1974) FEBS Lett. 42, 352-354.
Santana, M. L., Bispo, J. A. C., de Sena, A. R., Teshima, E., Brito, A. R., Costa, F. S., Franco, M., and Assis, S. A. (2020). J. Food Sci. Technol. https://doi.org/10.1007/s13197-020-04511-5
Kunitz, M. (1947) J. Gen. Physiol. 30 295-310. https://doi.org/10.1085/jgp.30.4.291
Bradford, M. M. (1976) Anal. Biochem. 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Kamada, M., Oda, K., and Murao, S. (1972) Agric. Biol. Chem, 36, 1095-1101. https://doi.org/10.1080/00021369.1972.10860377
Chou, H., Tam, M. F., Lee, S. S., Tai, H. - Y., Chang, C. Y., Chou, C. T., and Shen, H.-D. A. (2005) Int. Arch. Allergy Immunol. 138, 134-141. https://doi.org/10.1159/000088435
Lario, L. D., Chaud, L., Almeida, M., Converti, A., Sette, D. L., and Pessoa, A. (2015) Fungal Biol. 119, 1129-1136. https://doi.org/10.1016/j.funbio.2015.08.012
Santana, M. L, Paulo, E. M., Bispo, J. A., Sena, A. R, and Assis, S. A. (2018) Preparative Biochem. Biotechnol. 48(2), 165-171, DOI: 10.1080/10826068.2017.1421962
Chandrasekaran, M., and Sathiyabama, M. (2013) J. Basic Microbiol. 54, 763-74. https://doi.org/10.1002/jobm.201200584
Farnell, E., Rousseau, K., Thornton, D. J., Bowyer, P., and Herrick, S. E. (2012) Fungal Biol. 116, 1003-1012. https://doi.org/10.1016/j.molcatb.2011.06.003
Speranza, P., Carvalho, P. O., and Macedo, G. A. (2011) J. Mol. Catal. B. 72, 181-186. https://doi.org/10.1016/j.molcatb.2011.06.003
Savitha, S., Sadhasivam, S., Swaminathan, S., and Lin, F. H. (2011) J. Taiwan Inst. Chem. Eng. 42, 298-304. https://doi.org/10.1016/j.jtice.2010.05.012
Shankar, S., Rao, M., and Laxman, R. S. (2011) Process Biochem. 46 579-585. https://doi.org/10.1016/j.procbio.2010.10.013
Marciano, A. F., Coutinho-Rodrigues, C. J. B., Perinotto, W. M. S., Camargo, M. G., Gôlo, P. S., de Sá, F. A, Quinelato, S., Freitas, M. C., Angelo, I. C., Nogueira, M. R. S., and Bittencourt, V. R. E. P. (2015) Rev/ Bras. Med. Vet. 37, 85-90.
Zhang, J., Wang, J., Zhao, Y., Li, J., and Liu, Y. (2019) Int. J. Biol. Macromol. 124, 121-130. https://doi.org/10.1016/j.ijbiomac.2018.11.198
Siala, R., Sellami-Kamoun, A., Hajji, M., Abid, I., Gharsallah, N., and Nasri, M. (2009) Afr. J. Biotechnol. 8, 4582-4589.
Sharma, K. M., Kumar, R., Panwar, S., and Kumar, A. (2017) Genet. Eng. Biotechnol. 15, 115-126. https://doi.org/10.1016/j.jgeb.2017.02.001
Mesquita, M. V. N., Gomes, L. S., Matos, L. F. L., Oliveira, A. B. M., Nunes, D. B., Cambrussi, A. N. C. O., Freitas, A. F., and Ribeiro, A. B. (2018) Boletim Inform. Geum. 9, 38-50.
Betigeri, S. S., and Neau, S. H (2002) Biomaterials. 23, 3627-3636. https://doi.org/10.1016/s0142-9612(02)00095-9
Chern, J. T., and Chao, Y. P. (2005) J. Biotechnol. 117, 267-275. http://doi.org/10.1016/j.jbiotec.2005.02.001
Chang, M. Y., and Juang, R. S. (2007) Biochem. Eng. J. 35, 93-98. https://doi.org/10.1016/j.bej.2007.01.003
Carvalho, N. B., Lima, Á. S., and Soares, C. M. Quím. Nova 399-409. https://doi.org/10.5935/0100-4042.20140304
Popat, A., Hartono, S. B, Stahr, F., Liu, J., Qiao, S. Z., and Luo, G. Q. M. (2011) Nanoscale. 3, 2801-18. https://doi.org/10.1039/c1nr10224a
Soleimani, M., Khani, A., and Najafzadeh, K. (2011) J. Mol. Catal. B Enzym. 74, 1-5. https://doi.org/10.1016/j.molcatb.2011.07.011
Witono, Y., and Azkiyah, Y. L. (2016) Int. J. Adv. Sci. Eng. Inform. Technol. 6, 201-204. http://doi.org/10.18517/ijaseit.6.2.716
Liu, C. H., Lin, Y. H., Chen, C. Y., and Chang, J. S. (2009) J. Taiwan Inst. Chem. Eng. 40, 359-363. https://doi.org/10.1016/j.jtice.2008.10.004
Koszelewski, D., Müller, N., Schrittwieser, J. H., Faber, K., and Kroutil, W. (2010) Mol. Catal. B-Enzym, 63, 39-44. https://doi.org/10.1016/j.molcatb.2009.12.001
Ansari, S. A., and Husain, Q. (2012) Food Bioprod Process. 90 351-359. https://doi.org/10.1016/j.fbp.2011.07.003
Souza, P. M, Werneck, G., Aliakbarian, B., Siqueira, F., Ferreira Filho, E. X., Perego, P., Converti, A., Magalhaes, P. O., and Pessoa Jr, A. (2017) Food Chem. Toxicol. 109, 1103-1110. https://doi.org/10.1016/j.fct.2017.03.055
Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., and Fernandez-Lafuente, R. (2007) Enzyme Microb. Technol. 40, 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
Talekar, S., Joshi, A., Joshi, G., Kamat, P., Haripurkar, R., and Kambale, S. (2013) RSC Adv. 3, 12485-12511.
Cabrera-Padilla, R. Y., Lisboa, M. C., Fricks, A. T., Franceschi, E., Lima, A. S., Silva, D. P., and Soares, C. M. (2013) J. Ind. Microbiol. Biotechnol. 39, 289-98. https://doi.org/10.1007/s10295-011-1027-3
Hu, T., Cheng, J., Zhang, B., Lou, W., Zong, M. (2015) Ind. Eng. Chem. Res. 54, 4689-4698. https://doi.org/10.1021/ie504691j
Datta, S., Christena, L. R., and Rajaram, Y. R. S. (2013) 3 Biotech. 3, 1-9. https://doi.org/10.1007/s13205-012-0071-7
Sankar, K., and Achary, A. (2020) Chemi. Pap. 74, 459-470. https://doi.org/10.1007/s11696-019-00891-x
Özacar, M., Mehde, A. A., Mehdi, W. A., and Özacar, Z. (2018) Int. J. Biol. Macromol. 117, 947-958. https://doi.org/10.1016/j.ijbiomac.2018.04.195
Crescimbeni, M. C., Nolan, V., Clop, P. D., Marín, G. N., and Perillo, M. A. (2010) Colloids Surf. B. 76, 387-396. https://doi.org/10.1016/j.colsurfb.2009.11.005