Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering.
catalyst self-reconstruction
electrocatalysis
molecular modification
nanomaterials
water oxidation
Journal
ChemSusChem
ISSN: 1864-564X
Titre abrégé: ChemSusChem
Pays: Germany
ID NLM: 101319536
Informations de publication
Date de publication:
20 Nov 2020
20 Nov 2020
Historique:
received:
15
07
2020
revised:
25
08
2020
pubmed:
9
9
2020
medline:
9
9
2020
entrez:
8
9
2020
Statut:
ppublish
Résumé
Tuning the local environment of nanomaterial-based catalysts has emerged as an effective approach to optimize their oxygen evolution reaction (OER) performance, yet the controlled electronic modulation around surface active sites remains a great challenge. Herein, directed electronic modulation of NiO nanoparticles was achieved by simple surface molecular modification with small organic molecules. By adjusting the electronic properties of modifying molecules, the local electronic structure was rationally tailored and a close electronic structure-activity relationship was discovered: the increasing electron-withdrawing modification readily decreased the electron density around surface Ni sites, accelerating the reaction kinetics and improving OER activity, and vice versa. Detailed investigation by operando Raman spectroelectrochemistry revealed that the electron-withdrawing modification facilitates the charge-transfer kinetics, stimulates the catalyst reconstruction, and promotes abundant high-valent γ-NiOOH reactive species generation. The NiO-C
Identifiants
pubmed: 32896049
doi: 10.1002/cssc.202001716
pmc: PMC7756281
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5901-5909Subventions
Organisme : Swedish Research Council
ID : 2017-00935
Organisme : Swedish Energy Agency, the Knut and Alice Wallenberg Foundation
ID : KAW 2016.0072
Organisme : National Natural Science Foundation of China
ID : 21120102036
Informations de copyright
© 2020 The Authors. Published by Wiley-VCH GmbH.
Références
Nat Commun. 2019 Nov 7;10(1):5074
pubmed: 31699987
Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10295-10299
pubmed: 31106463
J Am Chem Soc. 2013 Aug 21;135(33):12329-37
pubmed: 23859025
Langmuir. 2010 Feb 2;26(3):2181-5
pubmed: 19715339
J Am Chem Soc. 2013 Jun 12;135(23):8452-5
pubmed: 23701670
J Am Chem Soc. 2016 May 4;138(17):5603-14
pubmed: 27031737
Nat Commun. 2014 Jun 30;5:4256
pubmed: 24977746
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18883-18887
pubmed: 31626385
J Colloid Interface Sci. 2005 Aug 1;288(1):140-8
pubmed: 15927572
Angew Chem Int Ed Engl. 2019 Jan 28;58(5):1252-1265
pubmed: 29665168
Chem Soc Rev. 2019 Apr 1;48(7):2216-2264
pubmed: 30895997
J Am Chem Soc. 2011 Feb 16;133(6):1646-9
pubmed: 21247155
Chem Soc Rev. 2014 Feb 7;43(3):744-64
pubmed: 24220322
Nat Commun. 2016 Aug 09;7:12324
pubmed: 27503136
ChemSusChem. 2020 Nov 20;13(22):5901-5909
pubmed: 32896049
Chem Soc Rev. 2020 Apr 7;49(7):2196-2214
pubmed: 32133479
J Am Chem Soc. 2018 Jan 10;140(1):441-450
pubmed: 29281274
Chem Sci. 2016 Apr 21;7(4):2639-2645
pubmed: 28660036
J Am Chem Soc. 2015 Dec 9;137(48):15112-21
pubmed: 26544169
Adv Mater. 2017 Aug;29(30):
pubmed: 28589657
Nat Commun. 2016 Jun 16;7:11981
pubmed: 27306541
Adv Mater. 2019 Mar;31(12):e1807898
pubmed: 30680800
J Am Chem Soc. 2017 Aug 23;139(33):11361-11364
pubmed: 28789520
Chem Soc Rev. 2017 Jan 23;46(2):337-365
pubmed: 28083578
ACS Nano. 2015 May 26;9(5):5180-8
pubmed: 25831435
Chem Soc Rev. 2019 Apr 1;48(7):1862-1864
pubmed: 30895987
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):3121-3132
pubmed: 29272096