Simultaneous δ

halite hydrogen laser spectroscopy oxygen stable isotopes

Journal

Journal of mass spectrometry : JMS
ISSN: 1096-9888
Titre abrégé: J Mass Spectrom
Pays: England
ID NLM: 9504818

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 19 03 2020
revised: 24 06 2020
accepted: 27 06 2020
entrez: 4 9 2020
pubmed: 4 9 2020
medline: 4 9 2020
Statut: ppublish

Résumé

Stable isotope compositions of ancient halite fluid inclusions have been recognized to be valuable tools for reconstructing past environments. Nevertheless, in order to better understand the genesis of halite deposits, it could be of great interest to combine both δ

Identifiants

pubmed: 32881207
doi: 10.1002/jms.4615
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4615

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Craig H. Isotopic variations in meteoric waters. Science. 1961;133(3465):1702-1703.
Craig H, Gordon LI. In: Tongiori E, ed. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Aleotemperatures. Laboratory of Geology and Nuclear Science, Consiglio nazionale delle richerche, Laboratorio de geologia nucleare, Pisa, Italy, 1965:9-130.
Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436-468.
Rozanski K, Araguás-Araguás L, Gonfiantini R. in Isotopic Patterns in Modern Global Precipitation in Climate Change in Continental Isotopic Records, Volume 78, (Eds: P.K. Swart, K.C. Lochmann, J. Mckenzie, S. Savin), 1993. https://doi.org/10.1029/GM078p0001
Gat JR. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci. 1996;24(1):225-262.
Gat JR, Klein B, Kushnir Y, et al. Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern. in Chemical and Physical Meteorology, (Eds: Tellus B) 2011, 55(5): 953-965. https://doi.org/10.3402/tellusb.v55i5.16395
Froehlich K, Gonfiantini R, Rozanski K. Isotopes in lake studies: a historical perspective. In Isotopes in the Water Cycle, (Eds: P.K. Aggarwal, J.R. Gat, K.F. Froehlich), Springer, Dordrecht, 2005. https://doi.org/10.1007/1-4020-3023-1_11
Merlivat L, Jouzel J. Global Climatic Interpretation of the Deuterium-Oxygen 18 Relationship for Precipitation. J Geophys Res. 1979;84(C8):5029-5033.
Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journ Geophys Res. 2008;113(D19):113-D19114. https://doi.org/10.1029/2008JD010209
Masson-Delmotte V, Jouzel J, Landais A, et al. GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin. Science. 2005;309(5731):118-121. https://doi.org/10.1126/science.1108575
Yurtsever Y. Worldwide survey of stable isotopes in precipitation. I.A.E.A. Int. At. Energy Agency, Vienna, Rep., Ž. report. Sect. Isot. Hydrol; 1975:53
Gat JR, Carmi I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res Atmos. 1970;75(15):3039-3048. https://doi.org/10.1029/JC075i015p03039
Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W. Deuterium excess in precipitation of Alpine regions-moisture recycling. Isotopes Environ Health Stud. 2008;44(1):61-70. https://doi.org/10.1080/10256010801887208
Aemisegger F, Pfahl S, Sodemann H, Lehner I, Seneviratne SI, Wernli H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics. 2014;14(8):4029-4054. https://doi.org/10.5194/acp-14-4029-2014
Juhlke TR, Sültenfuß J, Huneau F, et al. Tritium as hydrological tracer in Mediterranean precipitation events. Atmos Chem Phys Discuss. 2019;1-22. https://doi.org/10.5194/acp-2019-725
Knauth LP, Beeunas MA. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim Cosmochim Acta. 1986;50(3):419-433.
Horita J. Stable isotope paleoclimatology of brine inclusions in halite: modeling and application to Searles Lake. California Geochim Cosmochim Acta. 1990;54(7):2059-2073.
Yang W, Spencer RJ, Krouse HR, Lowenstein TK, Casas E. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, Western China: Hydrology and paleoclimatology in arid environments. Palaeogeogr Palaeoclimatol Palaeoecol. 1995;117(3-4):279-290.
Rigaudier T, Lecuyer C, Gardien V, Suc J-P, Martineau F. The record of temperature, wind velocity and air humidity in the dD and d18O of water inclusions in synthetic and Messinian halites. Geochim Cosmochim Acta. 2011-a;75:4637-4652.
Rigaudier T, Gardien V, Martineau F, Reverdy G, Lécuyer C. Hydrogen and Oxygen Isotope Reference Materials for the Analysis of Water Inclusions in Halite. Geostand Geoanal Res. 2011-b;36:51-59.
Koehler GD, Chipley D, Kyser TK. Measurement of the hydrogen and oxygen isotopic compositions of concentrated chloride brines and brines from fluid inclusions in halite. Chem Geol (Isotope Geoscience Section). 1991;94(1):45-54.
Morrison J, Brockwell T, Merren T, Phillips AM, Fourel F. On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Anal Chem. 2001;73(15):3570-3575.
Gehre M, Renpenning J, Geilmann H, et al. Optimization of on-line hydrogen stable isotope ratio measurements of halogen-and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS). Rapid Commun Mass Spectrom. 2016;31:475-484.
Fourel F, Lécuyer C, Seris M, et al. Improved online hydrogen isotope analysis of halite aqueous inclusions. Journ of Mass Spectrom. 2019;54(4):342-350. https://doi.org/10.1002/jms.4323
Werner RA, Kornexl BE, Rossman A, Schmidt HL. On-line determination of δ18O values of organic substances. Anal Chim Acta. 1996;319(1-2):159-164.
Farquhar GD, Henry BK, Styles JM. A rapid on-line technique for determination of oxygen isotope composition of nitrogen-containing organic matter and water. Rapid Commun Mass Spectrom. 1997;11(14):1554-1560.
Koziet J. Isotope ratio mass spectrometric method for the on-line determination of oxygen-18 in organic matter. Journ of Mass Spectrom. 1997;32(1):103-108.
Bréas O, Guillou C, Reniero F, Sada E, Angerosa F. Oxygen-18 measurement by continuous flow pyrolysis/isotope ratio mass spectrometry of vegetable oils. Rapid Commun Mass Spectrom. 1998;12(4):188-192.
Kornexl BE, Gehre M, Hofling R, Werner RA. On-line δ18O measurement of organic and inorganic substances. Rapid Commun Mass Spectrom. 1999;13(16):1685-1693.
Lécuyer C, Fourel F, Martineau F, et al. High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. J Mass Spectrom. 2007;42(1):36-41.
Brand WA, Coplen TB, Aerts-Bijma AT, et al. Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom. 2009;23(7):999-1019.
Fourel F, Martineau F, Lécuyer C, et al. 18O/16O ratios measurements of inorganic and organic materials by EA-pyrolysis-IRMS continuous flow techniques. Rapid Commun Mass Spec. 2011;25(19):2691-2696.
Koehler G, Wassenar LI. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy. Anal Chem. 2012;84(8):3640-3645.
Barker SLL, Dipple GM, Dong F, Baer DS. Use of Laser Spectroscopy to Measure the 13C/12C and 18O/16O Compositions of Carbonate Minerals. Anal Chem. 2011;83(6):2220-2026.
Lécuyer C, Gardien V, Rigaudier T, Fourel F, Martineau F, Cros A. Oxygen isotope fractionation and kinetics of equilibration between carbon dioxide and water as a function of salinity. Chem Geol. 2009;264:122-126.
Clauzel T, Maréchal C, Fourel F, et al. Reconstruction of sea-surface temperatures in the Canary Islands during Marine Isotope Stage 11. Quatern Res. 2019;94:195-209. https://doi.org/10.1017/qua.2019.65
Lis G, Wassenaar LI, Hendry MJ. High-Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter Natural Water Samples. Anal Chem. 2008;80:287-293.
Penna D, Stenni B, Šanda M, Wrede S, Bogaard TA, et al. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment. Hydrol Earth Syst Sci. 2012;14:1551-1566.
Baer DS, Paul JB, Gupta M, O'Keefe A. Sensitive absorption measurements in the near-infrared region using off-axis integrated cavity output spectroscopy. In: Fried A, ed. Diode Lasers and Applications in Atmospheric Sensing. Vol.4817 Bellingham, WA: SPIE-The International Society for Optical Engineering; 2002:167-176.
Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun Mass Spectrom. 2009;23:2534-2542.
Mering J, Barker S. Rapid and precise measurement of the hydrogen isotope composition of phyllosilicates by continuous flow OA-ICOS. Anal Chem. 2018;90-14:2852-2859.
L. G. Research: TWVIA-912 user manual, 2016, 1-99.
Wassenaar LI, Terzer-Wassmuth S, Douence C, Araguas-Araguas L, Aggarwal PK, Coplen TB. Seeking excellence: an evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Commun Mass Spectrom. 2018;32(5):393-406.
Blamey NJF, Brand U. Atmospheric gas in modern and ancient halite fluid inclusions: A screening protocol. Gondw Res. 2019;69:163. https://doi.org/10.1016/j.gr.2018.12.004
Blamey NJF, Brand U, Parnell J, et al. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology. 2016;44(8):651-654. https://doi.org/10.1130/G37937.1
Rogala B, Fralick PW, Heaman LM, Metsaranta R. Lithostratigraphy and chemostratigraphy of the Mesoproterozoic Sibley Group, northwestern Ontario, Canada. Can J Earth Sci. 2007;44(8):1131-1149.
Blättler CL, Claire MW, Prave AR, Kirsimäe K, Higgins JA. Two-billion-year-old evaporites capture Earth's great oxidation. Science. 2018;360(6386):320-323. https://doi.org/10.1126/science.aar2687
Gibson JJ, Edwards TWD, Prowse TD. Pan-derived isotopic composition of atmospheric water vapor and its variability in northern Canada. J Hydrol. 1999;217(1-2):55-74.
Lécuyer C, Ph G, Robert F. Hydrogen isotope composition of seawater and the global water cycle. Chem Geol. 1998;145:249.
Genda H, Ikoma M. Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus. 2008;194:42.
Kurokawa H, Foriel J, Laneuville M, Houser C, Usui T. Subduction and atmospheric escape of Earth's seawater constrained by hydrogen isotopes. Earth Planet Sci Lett. 2018;497:149.

Auteurs

François Fourel (F)

Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés LEHNA UMR CNRS 5023, Université Claude Bernard Lyon 1, Villeurbanne, France.

Christophe Lécuyer (C)

Laboratoire de Géologie de Lyon "Terre, Planètes Environnement," CNRS UMR 5276, Université Claude Bernard Lyon 1, Villeurbanne, France.

Patrick Jame (P)

Institut des Sciences Analytiques de Lyon (ISA Lyon), Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France.

Alexandre Guironnet (A)

Institut des Sciences Analytiques de Lyon (ISA Lyon), Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France.

Antoine Boutier (A)

Laboratoire de Géologie de Lyon "Terre, Planètes Environnement," CNRS UMR 5276, Université Claude Bernard Lyon 1, Villeurbanne, France.

Manon Barbier (M)

Institut des Sciences Analytiques de Lyon (ISA Lyon), Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France.

Nigel Blamey (N)

Department of Earth Sciences, Western University Canada, 1151 Richmond Street N. London, Ontario, N6A 5B7, Canada.

Uwe Brand (U)

Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada.

Philip Fralick (P)

Department of Geology, Lakehead University, Thunder Bay, Ontario, Canada.

Classifications MeSH