The XFM beamline at the Australian Synchrotron.

X-ray fluorescence XANES imaging XRF microprobe XRF tomography ptychography

Journal

Journal of synchrotron radiation
ISSN: 1600-5775
Titre abrégé: J Synchrotron Radiat
Pays: United States
ID NLM: 9888878

Informations de publication

Date de publication:
01 Sep 2020
Historique:
received: 05 06 2020
accepted: 22 07 2020
entrez: 3 9 2020
pubmed: 3 9 2020
medline: 3 9 2020
Statut: ppublish

Résumé

The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick-Baez mirror microprobe, which produces a focal spot of 2 µm × 2 µm FWHM, and a large-area scanning `milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.

Identifiants

pubmed: 32876622
pii: S1600577520010152
doi: 10.1107/S1600577520010152
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1447-1458

Auteurs

Daryl L Howard (DL)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Martin D de Jonge (MD)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Nader Afshar (N)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Chris G Ryan (CG)

Commonwealth Scientific and Industrial Research Organisation, Normanby Road, Clayton, Victoria, Australia.

Robin Kirkham (R)

Commonwealth Scientific and Industrial Research Organisation, Normanby Road, Clayton, Victoria, Australia.

Juliane Reinhardt (J)

Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.

Cameron M Kewish (CM)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Jonathan McKinlay (J)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Adam Walsh (A)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Jim Divitcos (J)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Noel Basten (N)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Luke Adamson (L)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Tom Fiala (T)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Letizia Sammut (L)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

David J Paterson (DJ)

Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

Classifications MeSH