Surface brachytherapy: Joint report of the AAPM and the GEC-ESTRO Task Group No. 253.
skin brachytherapy
surface applicator QA
surface brachytherapy
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
received:
06
10
2019
revised:
15
07
2020
accepted:
16
07
2020
pubmed:
31
8
2020
medline:
15
5
2021
entrez:
31
8
2020
Statut:
ppublish
Résumé
The surface brachytherapy Task Group report number 253 discusses the common treatment modalities and applicators typically used to treat lesions on the body surface. Details of commissioning and calibration of the applicators and systems are discussed and examples are given for a risk-based analysis approach to the quality assurance measures that are necessary to consider when establishing a surface brachytherapy program.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e951-e987Informations de copyright
© 2020 American Association of Physicists in Medicine.
Références
Ouhib Z, Kasper M, Perez Calatayud J, et al. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy. 2015;14:840-858.
Guinot JL, Rembielak A, Perez-Calatayud J, et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol. 2018;126:377-385.
Fulkerson RK, Micka JA, DeWerd LA. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate 192Ir sources. Med Phys. 2014;41:022104.
Guinot JL, Perez-Calatayud J, Van Limbergen E. GEC-ESTRO Handbook of Brachytherapy. in Skin cancer, 2nd ed.; 2017.
Fulkerson RK, Micka JA, DeWerd LA. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source. Med Phys. 2014;41:022103.
Hepel JT, Hiatt JR, Cardarelli GA, Wazer DE. Modeling study for optimization of skin dose for partial breast irradiation using Xoft Axxent electronic brachytherapy applicator. Brachytherapy. 2010;9:81-85.
Xoft Inc. “Electronic Brachytherapy System® Operator Manual. Appendix J,” San Jose, CA; 2009.
Joslin CA, Liversage WE, Ramsey NW. High dose-rate treatment moulds by afterloading techniques. Br J Radiol. 1969;42:108-112.
Joslin CA, Flynn A, Hall E, eds. Principles and Practice of Brachytherapy using Afterloading Systems. London: Oxford University Press; 2001:393-399.
Ricotti R, Vavassori A, Bazani A, et al. 3D-printed applicators for high dose rate brachytherapy: dosimetric assessment at different infill percentage. Phys Medica. 2016;32:1698-1706.
Jones E-L, Tonino Baldion A, Thomas C, et al. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy. Brachytherapy. 2017;16:409-414.
Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys. 1995;22:209-234.
Rivard MJ, Butler WM, DeWerd LA, et al. Response to ‘Comment on “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations” ’ [Med. Phys. 31, 633-674 (2004)]. Med Phys. 2005;32:1822-1824.
Rivard MJ, Butler WM, DeWerd LA, et al. Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys. 2007;34:2187-2205.
Rivard MJ, Butler WM, DeWerd LA, et al. Erratum: ‘Supplement to the 2004 update of the AAPM Task Group No. 43 Report’ [Med. Phys. 34, 2187-2205 (2007)]. Med Phys. 2010;37:2396.
Ma C-M, Coffey CW, DeWerd LA, et al. AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001;28:868-893.
Nath R, Rivard MJ, DeWer LA, et al. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: Report of Task Group 167. Med Phys. 2016;43:3178-3205.
Thomadsen BR, Biggs PJ, Cardarelli GA, et al. Electronic intracavitary brachytherapy quality management based on risk analysis: the report of AAPM TG 182. Med Phys. 2020;47:e65-e91.
Perez-Calatayud J, Ballester F, Das RK, et al. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. Med Phys. 2012;39:2904-2929.
Li Z, Das RK, DeWerd LA, et al. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 keV. Med Phys. 2006;34:37-40.
Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21:581-618.
Nath R, Anderson LL, Meli JA, et al. Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. Med Phys. 1997;24:1557-1598.
Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209-4262.
Davis SD. Air-Kerma Strength Determination of A Miniature X-Ray Source for Brachytherapy Applications. Madison, WI: University of Wisconsin; 2009.
Pike T, Davis S, Micka J, DeWerd L. SU-E-T-85: ionization chamber measured dose-rate constant of the Xoft Axxent electronic brachytherapy source. Med Phys. 2011;38:3505.
Boman EL, Satherley TWS, Schleich N, Paterson DB, Greig L, Louwe RJW. The validity of Acuros BV and TG-43 for high-dose-rate brachytherapy superficial mold treatments. Brachytherapy. 2017;16:1280-1288.
Carl Zeiss Meditec. INTRABEAM Dosimetry, User Manual,” Jena, Germany; 2011.
Candela-Juan C, Niatsetski Y, Ouhib Z, Ballester F, Vijande J, Perez-Calatayud J. Commissioning and periodic tests of the Esteya® electronic brachytherapy system. J Contemp Brachytherapy. 2015;2:189-195.
Candela-Juan C, Vijande J, García-Martíne T, et al. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry. Med Phys. 2015;42:4954-4964.
Garcia-Martinez T, Chan J-P, Perez-Calatayud J, Ballester F. Dosimetric characteristics of a new unit for electronic skin brachytherapy. J Contemp Brachytherapy. 2014;1:45-53.
Tien CJ, Pinkham DW, Chen Z (Jay). Feasibility of using multiple-dwell positions in 192Ir Leipzig-style brachytherapy surface applicators to expand target coverage and clinical application. Brachytherapy. 2020;19:532-543..
Anagnostopoulos G, Andrássy M, Baltas D. The Bebig Valencia-type skin applicators: dosimetric study and implementation of a dosimetric hybrid technique. Brachytherapy. 2017;16:1044-1056.
Candela-Juan C, Niatsetski Y, van der Laarse R, et al. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions. Med Phys. 2016;43:1639-1648.
Parker HM. A dosage system for interstitial radium therapy. Part II-physical aspects. Br J Radiol. 1938;11:313-340.
Paterson R, Parker HM. Editors’ note. Br J Radiol. 1995;68:H60-H100.
Evans MDC, Yassa M, Podgorsak EB, Roman TN, Schreiner LJ, Souhami L. Surface applicators for high dose rate brachytherapy in aids-related Kaposi’s sarcoma. Int J Radiat Oncol. 1997;39:769-774.
Granero D, Candela-Juan C, Vijande J, et al. Technical note: dosimetry of Leipzig and Valencia applicators without the plastic cap. Med Phys. 2016;43:2087-2090.
Pérez-Calatayud J, Granero D, Ballester F, et al. A dosimetric study of Leipzig applicators. Int J Radiat Oncol. 2005;62:579-584.
Granero D, Pérez-Calatayud J, Gimeno J, et al. Design and evaluation of a HDR skin applicator with flattening filter. Med Phys. 2008;35:495-503.
Eaton DJ, Gonzalez R, Duck S, Keshtgar M. Radiation protection for an intra-operative X-ray device. Br J Radiol. 2011;84:1034-1039.
Goubert M, Parent L. Dosimetric characterization of INTRABEAM® miniature accelerator flat and surface applicators for dermatologic applications. Phys Medica. 2015;31:224-232.
Schneider F, Clausen S, Thölking J, Wenz F, Abo-madyan Y. A novel approach for superficial intraoperative radiotherapy (IORT) using a 50 kV X-ray source: a technical and case report. J Appl Clin Med Phys. 2014;15:4502.
Goetsch SJ, Attix FH, Pearson DW, Thomadsen BR. Calibration of 192Ir high-dose-rate afterloading systems. Med Phys. 1991;18:462-467.
Stump KE, DeWerd LA, Micka JA, Anderson DR. Calibration of new high dose rate 192Ir sources. Med Phys. 2002;29:1483-1488.
Rasmussen BE, Davis SD, Schmidt CR, Micka JA, DeWerd LA. Comparison of air-kerma strength determinations for HDR 192 Ir sources. Med Phys. 2011;38:6721-6729.
Iftimia I, McKee AB, Halvorsen PH. Varian HDR surface applicators - commissioning and clinical implementation. J Appl Clin Med Phys. 2016;17:231-248.
Hwang IM, Leung H. Dosimetry characteristics of Leipzig applicators. In: Proceedings of the 1st Far East Radiotherapy Treatment Planning Workshop; 1996, pp. 88-89.
Niu H, Hsi WC, Chu JCH, Kirk MC, Kouwenhoven E. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy. Med Phys. 2004;31:3372-3377.
Pradhan AS, Quast U. In-phantom response of LiF TLD-100 for dosimetry of 192Ir HDR source. Med Phys. 2000;27:1025-1029.
PTW. Instruction manual for Markus-chamber type 23343. Freiburg, Germany; 1987.
Pérez-Calatayud J, Granero D, Ballester F, Crispín V, van der Laarse R. Erratum: ‘Technique for routine output verification of Leipzig applicators with a well chamber’ [Med. Phys. 33, 16-20 (2006)]. Med Phys. 2006;33:2654.
Stephen Gotts H. Comment on ‘Correspondence factor for nucletron surface applicators’. Med Phys. 2012;39:2947-2948.
Granero D, Perez-Calatayud J, Ballester F, et al. Reply to ‘comment on “correspondence factor for Nucletron surface applicators”’. Med Phys. 2012;39:2310-2311.
Donaghue J, Gajdos S. SU-F-T-23: correspondence factor correction coefficient for commissioning of Leipzig and Valencia applicators with the standard imaging IVB 1000. Med Phys. 2016;43:3466.
Safigholi H, Meigooni AS, Song WY. Comparison of 192 Ir, 169 Yb, and 60 Co high-dose rate brachytherapy sources for skin cancer treatment. Med Phys. 2017;44:4426-4436.
Granero D, Perez-Calatayud J, Ballester F, Ouhib Z. Radiation leakage study for the Valencia applicators. Phys Medica. 2013;29:60-64.
Granero D, Candela-Juan C, Ballester F, et al. Commissioning and quality assurance procedures for the HDR Valencia skin applicators. J Contemp Brachytherapy. 2016;5:441-447.
Rong Y, Welsh JS. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatmenta). Med Phys. 2010;37:5509-5517.
Valdivieso-Casique MF, Rodríguez R, Rodríguez-Bescós S, et al. RADIANCE-a planning software for intra-operative radiation therapy. Transl Cancer Res. 2015;4:196-209.
Ibanez-Garcia PB. Implementation and validation of ultra-fast dosimetric tools for IORT. Universidad Complutense de Madrid; 2017.
Andreo P, Kanai T, Laitano F, Smyth V, Zealand N, Vynckier S. Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, Vienna; 2004.
Vijande J, Ballester F, Ouhib Z, et al. Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy. 2012;11:528-535.
Salvat F, Fernández-Varea JMJM, Sempau J. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux: OECD-NEA; 2008.
Granero D, Perez-Calatayud J, Vijande J, Ballester F, Rivard MJ. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations. Med Phys. 2014;41:021703.
Candela-Juan C, Granero D, Vijande J, Ballester F, Perez-Calatayud J, Rivard MJ. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy. J Radiol Prot. 2014;34:297-311.
Thomadsen BR, Williamson JF, Rivard MJ, Meigooni AS. Anniversary paper: Past and current issues, and trends in brachytherapy physics. Med Phys. 2008;35:4708-4723.
Williamson JF, Rivard MJ. Thermoluminescent detector and Monte Carlo techniques for reference-quality brachytherapy dosimetry. In: Summer School AAPM, Rogers DWO, Cygler J, eds. Clinical Dosimetry for Radiotherapy. Madison, WI: Medical Physics Publishing; 2009.
Carlsson Tedgren A, Elia R, Hedtjärn H, Olsson S, Alm Carlsson G. Determination of absorbed dose to water around a clinical HDR 192Ir source using LiF:Mg, Ti TLDs demonstrates an LET dependence of detector response. Med Phys. 2012;39:1133-1140.
Wong TPY, Fernando W, Johnston PN, Bubb IF. Transit dose of an Ir-192 high dose rate brachytherapy stepping source. Phys Med Biol. 2001;46:323-331.
DeWerd LA, Ibbott GS, Meigooni AS, et al. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO. Med Phys. 2011;38:782-801.
Schoenfeld AA, Harder D, Poppe B, Chofor N. Water equivalent phantom materials for 192 Ir brachytherapy. Phys Med Biol. 2015;60:9403-9420.
Attix FH. Introduction to Radiological Physics and Radiation Dosimetry. New York: Wiley; 1986.
Looe HK, Harder D, Poppe B. Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry. Phys Med Biol. 2011;56:4267-4290.
Hill R, Kuncic Z, Baldock C. The water equivalence of solid phantoms for low energy photon beams. Med Phys. 2010;37:4355-4363.
Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C. Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol. 2014;59:R183-R231.
Nunn AA, Davis SD, Micka JA, DeWerd LA. LiF:Mg, Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co. Med Phys. 2008;35:1859-1869.
Rivard MJ, Ballester F, Butler WM, et al. Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO. Med Phys. 2017;44:e297-e338.
Massillon-Jl G, Cabrera-Santiago A, Minniti R, O’Brien M, Soares CG. Influence of phantom materials on the energy dependence of LiF:Mg, Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons. Phys Med Biol. 2014;59:4149-4166.
Rivard MJ, Melhus CS, Granero D, Perez-Calatayud J, Ballester F. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributionsa). Med Phys. 2009;36:1968-1975.
Rivard MJ, Venselaar JLM, Beaulieu L. The evolution of brachytherapy treatment planning. Med Phys. 2009;36:2136-2153.
Beaulieu L, Tedgren AC, Carrier J-F, et al. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys. 2012;39:6208-6236.
American Brachytherapy Society. Brachytherapy Guidelines and Consensus Statements; 2018. [Online]. Available: https://www.americanbrachytherapy.org/guidelines/. [Accessed: 01-Jan-2016].
Safigholi H, Song WY, Meigooni AS. Optimum radiation source for radiation therapy of skin cancer. J Appl Clin Med Phys. 2015;16:219-227.
Chow J, Owrangi A, Grigorov G. SU-E-T-693: surface dose reduction from bone interface in superficial x-ray radiation therapy: a Monte Carlo Study. Med Phys. 2011;38:3649.
Butson MJ, Cheung T, Yu PKN. Measurement of dose reductions for superficial x-rays backscattered from bone interfaces. Phys Med Biol. 2008;53:N329-N336.
Perez-Calatayud J, Granero D, Ballester F, Crispin V, van der Laarse R. Erratum: ‘Technique for routine output verification of Leipzig applicators with a well chamber’ [Med. Phys. 33, 16-20 (2006)]. Med Phys. 2006;33:2654.
Ballester Sánchez R, Llanas OP, Calatayud JP, Estrada RB. Dermoscopy margin delineation in radiotherapy planning for superficial or nodular basal cell carcinoma. Br J Dermatol. 2015;172:1162-1163.
Villalba SR, Perez-Calatayud MJ, Bautista JA, et al. Novel simple templates for reproducible positioning of skin applicators in brachytherapy. J Contemp Brachytherapy. 2016;4:344-348.
Ballester-Sánchez R, Pons-Llanas O, Llavador-Ros M, et al. Depth determination of skin cancers treated with superficial brachytherapy: Ultrasound vs. histopathology. J Contemp Brachytherapy. 2014;6:356-361.
Ibanez-Rosello B, Bautista-Ballesteros JA, Bonaque J, et al. Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit. J Contemp Brachytherapy. 2016;6:518-524.
Jones D. ICRU report 50-prescribing, recording and reporting photon beam therapy. Med Phys. 1994;21:833-834.
United States National Regulatory Comission. Part 35 - Medical use of byproduct material; 2018.
Ballester F, Tedgren Å, Granero D, et al. A generic high-dose rate 192 Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism. Med Phys. 2015;42:3048-3062.
Thomadsen BR, Biggs PJ, DeWerd LA, et al. The 2007 AAPM response to the CRCPD request for recommendations for the CRCPD’s model regulations for electronic brachytherapy, College Park, MD; 2009.
National Council on Radiation Protection and Measurements. NCRP Report No 155 Management of Radionuclide Therapy Patients. Bethesda, MD; 2006.
Thomadsen BR, Erickson BA, Eifel PJ, et al. A review of safety, quality management, and practice guidelines for high-dose-rate brachytherapy: executive summary. Pract Radiat Oncol. 2014;4:65-70.
Zietman AL, Palta JR, Steinberg M. Safety is No Accident.
Thomadsen B, Lin SW, Laemmrich P, et al. Analysis of treatment delivery errors in brachytherapy using formal risk analysis techniques. Int J Radiat Oncol. 2003;57:1492-1508.
Schneider F, Bludau F, Clausen S, Fleckenstein J, Obertacke U, Wenz F. Precision IORT - image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction. Phys Medica. 2017;37:82-87.
Cohen GN, Episcopia K, Lim S-B, et al. Intraoperative implantation of a mesh of directional palladium sources (CivaSheet): dosimetry verification, clinical commissioning, dose specification, and preliminary experience. Brachytherapy. 2017;16:1257-1264.
Arenas M, Sabater S, Sintas A, et al. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow. J Contemp Brachytherapy. 2017;9:270-276.
Cunha A, Butler WM, Damato AL, Beaulieu L. Brachytherapy technologies in early clinical translation. In: Rivard MJ, Beaulieu L, Thomadsen BR, eds. Clincial Brachytherapy Physics. Madison, WI: AAPM - American Association of Physicists in Medicine; 2017:331-366.