Spatial heterogeneity of acquired resistance mechanisms to 1st/2nd generation EGFR tyrosine kinase inhibitors in lung cancer.
Digital PCR
Epidermal growth factor receptor (EGFR) mutation
MET gene amplification
Molecular targeted therapy
T790M
Journal
Lung cancer (Amsterdam, Netherlands)
ISSN: 1872-8332
Titre abrégé: Lung Cancer
Pays: Ireland
ID NLM: 8800805
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
07
07
2020
revised:
13
08
2020
accepted:
15
08
2020
pubmed:
30
8
2020
medline:
22
6
2021
entrez:
30
8
2020
Statut:
ppublish
Résumé
Overcoming acquired resistance against targeted therapies to improve outcomes of lung cancer patients harboring driver mutations is a critical issue. While drug therapy oriented to a resistance mechanism appears attractive, spatial heterogeneity of resistance mechanisms in each patient will diminish treatment efficacy. However, the frequency, clinical backgrounds, clinical implications, and patterns of spatial heterogeneity in resistance mechanisms to EGFR tyrosine kinase inhibitors (TKIs) are largely unknown. This study included 128 specimens from 24 autopsied patients with lung adenocarcinoma harboring EGFR mutation. Acquired resistance mechanisms reported as relatively frequent in lung cancer, e.g., T790 M and other secondary EGFR mutations, MET and ERBB2 gene amplification, and histological transformation, were retrospectively examined. All patients had received 1st/2nd generation EGFR-TKI and showed acquired resistance to the drug before death. No patient received osimertinib. No resistance mechanism was identified in two patients. T790M mutation was detected in 20 patients (83 %); however, nine of these patients also had lesions without T790M mutation. Among 22 patients whose resistance mechanisms were identified, ten had spatial heterogeneity of resistance mechanisms (45 %), and these patients had significantly shorter time-to-treatment failure compared with those without heterogeneity (median 4.7 months vs. 14.7 months, p = 0.0004). We observed significant spatial heterogeneity of acquired resistance mechanisms to EGFR-TKIs in lung adenocarcinoma. Our results also indicate that the incidence of resistance mechanisms may vary based on the biopsied tumor locations.
Sections du résumé
BACKGROUND
Overcoming acquired resistance against targeted therapies to improve outcomes of lung cancer patients harboring driver mutations is a critical issue. While drug therapy oriented to a resistance mechanism appears attractive, spatial heterogeneity of resistance mechanisms in each patient will diminish treatment efficacy. However, the frequency, clinical backgrounds, clinical implications, and patterns of spatial heterogeneity in resistance mechanisms to EGFR tyrosine kinase inhibitors (TKIs) are largely unknown.
PATIENTS AND METHODS
This study included 128 specimens from 24 autopsied patients with lung adenocarcinoma harboring EGFR mutation. Acquired resistance mechanisms reported as relatively frequent in lung cancer, e.g., T790 M and other secondary EGFR mutations, MET and ERBB2 gene amplification, and histological transformation, were retrospectively examined. All patients had received 1st/2nd generation EGFR-TKI and showed acquired resistance to the drug before death. No patient received osimertinib.
RESULTS
No resistance mechanism was identified in two patients. T790M mutation was detected in 20 patients (83 %); however, nine of these patients also had lesions without T790M mutation. Among 22 patients whose resistance mechanisms were identified, ten had spatial heterogeneity of resistance mechanisms (45 %), and these patients had significantly shorter time-to-treatment failure compared with those without heterogeneity (median 4.7 months vs. 14.7 months, p = 0.0004).
CONCLUSION
We observed significant spatial heterogeneity of acquired resistance mechanisms to EGFR-TKIs in lung adenocarcinoma. Our results also indicate that the incidence of resistance mechanisms may vary based on the biopsied tumor locations.
Identifiants
pubmed: 32861140
pii: S0169-5002(20)30584-5
doi: 10.1016/j.lungcan.2020.08.010
pii:
doi:
Substances chimiques
Protein Kinase Inhibitors
0
EGFR protein, human
EC 2.7.10.1
ErbB Receptors
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100-104Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.