Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery.


Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
26 Aug 2020
Historique:
received: 02 07 2020
revised: 04 08 2020
accepted: 12 08 2020
entrez: 30 8 2020
pubmed: 30 8 2020
medline: 26 3 2021
Statut: epublish

Résumé

Monitoring biomass of forages in experimental plots and livestock farms is a time-consuming, expensive, and biased task. Thus, non-destructive, accurate, precise, and quick phenotyping strategies for biomass yield are needed. To promote high-throughput phenotyping in forages, we propose and evaluate the use of deep learning-based methods and UAV (Unmanned Aerial Vehicle)-based RGB images to estimate the value of biomass yield by different genotypes of the forage grass species

Identifiants

pubmed: 32858803
pii: s20174802
doi: 10.3390/s20174802
pmc: PMC7506807
pii:
doi:

Types de publication

Letter

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
ID : 59/300.075/2015
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 433783/2018-4; 303559/2019-5

Références

Sensors (Basel). 2013 Aug 06;13(8):10027-51
pubmed: 23925082
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442

Auteurs

Wellington Castro (W)

Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

José Marcato Junior (J)

Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Caio Polidoro (C)

Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Lucas Prado Osco (LP)

Faculty of Engineering, Architecture and Urbanism, University of Western São Paulo, Presidente Prudente 19067175, SP, Brazil.

Wesley Gonçalves (W)

Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Lucas Rodrigues (L)

Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Mateus Santos (M)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Liana Jank (L)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Sanzio Barrios (S)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Cacilda Valle (C)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Rosangela Simeão (R)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Camilo Carromeu (C)

Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, MS, Brazil.

Eloise Silveira (E)

Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Lúcio André de Castro Jorge (LAC)

Embrapa Instrumentation, São Carlos 13560970, SP, Brazil.

Edson Matsubara (E)

Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, MS, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH