Effect of the exposure to oxidation and malondialdehyde on turkey and rabbit meat protein oxidative stability.


Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 03 04 2020
revised: 10 07 2020
accepted: 13 07 2020
pubmed: 29 8 2020
medline: 29 12 2020
entrez: 29 8 2020
Statut: ppublish

Résumé

The present study aimed at evaluating the effect of the exposure to a strong oxidative environment (100 mM NaClO) and the concurrent incubation with different malondialdehyde (MDA) concentrations (0 to 5 mM) on protein carbonylation, free thiol groups, total heme pigments, and on the relative concentration of the different myoglobin (Mb) derivatives in turkey thigh and rabbit hind leg meat to elucidate their eventual role in inducing oxidative modifications on the protein fraction. With regard to turkey meat, the addition of a strong oxidant resulted in remarkably higher (P < 0.001) carbonyls along with a reduction in free thiol groups (which become undetectable). The relative concentration of MbO

Identifiants

pubmed: 32857873
doi: 10.1111/1750-3841.15403
doi:

Substances chimiques

Meat Proteins 0
Myoglobin 0
Malondialdehyde 4Y8F71G49Q

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3229-3236

Informations de copyright

© 2020 Institute of Food Technologists®.

Références

Barbut, S. (2015). Developments in turkey meat harvesting technologies. World's Poultry Science Journal, 71, 59-70.
Burcham, P. C., & Kuhan, Y. T. (1996). Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochemical and Biophysical Research Communications, 220(3), 996-1001. https://doi.org/10.1006/bbrc.1996.0521
Buttkus, H. (1967). The reaction of myosin with malonaldehyde. Journal of Food Science, 32(4), 432-434. https://doi.org/10.1111/j.1365-2621.1967.tb09703.x
Chan, W. K. M., Faustman, C., Yin, M., & Decker, E. A. (1997). Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of H2O2 and superoxide anion. Meat Science, 46(2), 181-190. https://doi.org/10.1016/S0309-1740(97)00014-4
Cullere, M., & Dalle Zotte, A. (2018). Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Science, 143, 137-146. https://doi.org/10.1016/j.meatsci.2018.04.029
Dalle Zotte, A., & Szendro, Z. (2011). The role of rabbit meat as functional food. Meat Science, 88(3), 319-331. https://doi.org/10.1016/j.meatsci.2011.02.017
de Castro Cardoso Pereira P. M., & dos Reis Baltazar Vicente, A. F. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science, 93(3), 586-592. https://doi.org/10.1016/j.meatsci.2012.09.018
Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 1-31. https://doi.org/10.3390/antiox8100429
Dosi, R., Di Maro, A., Chambery, A., Colonna, G., Costantini, S., Geraci, G., & Parente, A. (2006). Characterization and kinetics studies of water buffalo (Bubalus bubalis) myoglobin. Comparative Biochemistry and Physiology - Biochemistry and Molecular Biology, 145(2), 230-238. https://doi.org/10.1016/j.cbpb.2006.07.006
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine, 11, 81-128.
Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259-279. https://doi.org/10.1016/j.meatsci.2011.04.025
Estévez, M. (2015). Oxidative damage to poultry: From farm to fork. Poultry Science, 94(6), 1368-1378. https://doi.org/10.3382/PS/PEV094
Estévez, M., & Cava, R. (2004). Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Science, 68(4), 551-558. https://doi.org/10.1016/j.meatsci.2004.05.007
Estévez, M., Morcuende, D., & Ventanas, S. (2009). Determination of oxidation. In L. M. L. Nollet & F. Toldrá (Eds.), Handbook of muscle foods analysis (pp. 141-163). Boca Raton, FL: CRC Press.
Estévez, M., Padilla, P., Carvalho, L., Martín, L., Carrapiso, A., & Delgado, J. (2019). Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biology, 26(April), 101277. https://doi.org/10.1016/j.redox.2019.101277
Faustman, C., Liebler, D. C., McClure, T. D., & Sun, Q. (1999). α,β-Unsaturated aldehydes accelerate oxymyoglobin oxidation. Journal of Agricultural and Food Chemistry, 47(8), 3140-3144. https://doi.org/10.1021/jf990016c
Fernández, J., Pérez-Álvarez, J. A., & Fernández-López, J. A. (1997). Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chemistry, 59(3), 345-353. https://doi.org/10.1016/S0308-8146(96)00114-8
Frederiksen, A. M., Lund, M. N., Andersen, M. L., & Skibsted, L. H. (2008). Oxidation of porcine myosin by hypervalent myoglobin: The role of thiol groups. Journal of Agricultural and Food Chemistry, 56(9), 3297-3304. https://doi.org/10.1021/jf072852p
Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science and Technology, 50, 131-143. https://doi.org/10.1016/j.tifs.2016.01.026
Hernandez, P., & Gondret, F. (2006). 5.1. Rabbit meat quality. In L. Maertens, & P. Coudert (Eds.), Recent advances in rabbit sciences, (pp. 269-290. Belgium: ILVO, Melle.
Krzywicki, K. (1982). The determination of haem pigments in meat. Meat Science, 7(1), 29-36. https://doi.org/10.1016/0309-1740(82)90095-X
Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., … Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186(C), 464-478. https://doi.org/10.1016/0076-6879(90)86141-H
Liu, G., Xiong, Y. L., & Butterfield, D. A. (2000). Properties of oxidized myofibrils and whey- and soy-protein isolates. Journal of Food Science, 65(5), 811-818.
Lund, M. N., Heinonen, M., Baron, C. P., & Estévez, M. (2011). Protein oxidation in muscle foods: A review. Molecular Nutrition and Food Research, 55(1), 83-95. https://doi.org/10.1002/mnfr.201000453
Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., & Skibsted, L. H. (2007). High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science, 77(3), 295-303. https://doi.org/10.1016/j.meatsci.2007.03.016
Lynch, M. P., & Faustman, C. (2000). Effect of aldehyde lipid oxidation products on myoglobin. Journal of Agricultural and Food Chemistry, 48(3), 600-604. https://doi.org/10.1021/jf990732e
Mercier, Y., Gatellier, P., Viau, M., Remignon, H., & Renerre, M. (1998). Effect of dietary fat and vitamin E on colour stability and on lipid and protein oxidation in turkey meat during storage. Meat Science, 48(3-4), 301-318. https://doi.org/10.1016/s0309-1740(97)00113-7
Min, B., & Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products - A review. Food Science and Biotechnology, 14(1), 152-163.
Min, B., Nam, K. C., Cordray, J., & Ahn, D. U. (2008). Endogenous factors affecting oxidative stability of beef loin, pork poin, and chicken breast and thigh meats. Journal of Food Science, 73(6), C439-C446. https://doi.org/10.1111/j.1750-3841.2008.00805.x
Morzel, M., Gatellier, P., Sayd, T., Renerre, M., & Laville, E. (2006). Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Science, 73(3), 536-543. https://doi.org/10.1016/j.meatsci.2006.02.005
Petracci, M., & Cavani, C. (2013). Rabbit meat processing: Historical perspective to future directions. World Rabbit Science, 21(4), 217-226. https://doi.org/10.4995/wrs.2013.1329
Petracci, M., Soglia, F., & Leroy, F. (2018). Rabbit meat in need of a hat-trick: From tradition to innovation (and back). Meat Science, 146, 93-100. https://doi.org/10.1016/J.MEATSCI.2018.08.003
Soglia, F., Baldi, G., Laghi, L., Mudalal, S., Cavani, C., & Petracci, M. (2018). Effect of white striping on turkey breast meat quality. Animal, 12(10), 2198-2204. https://doi.org/10.1017/S1751731117003469
Soglia, F., Petracci, M., & Ertbjerg, P. (2016). Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chemistry, 197, 670-675. https://doi.org/10.1016/j.foodchem.2015.11.038
Suman, S. P., & Joseph, P. (2013). Myoglobin chemistry and meat color. Annual Review of Food Science and Technology, 4(1), 79-99. https://doi.org/10.1146/annurev-food-030212-182623
Thiansilakul, Y., Benjakul, S., & Richards, M. P. (2011). The effect of Fenton's reactants and aldehydes on the changes of myoglobin from Eastern little tuna (Euthynnus affinis) dark muscle. European Food Research and Technology, 232(2), 221-230. https://doi.org/10.1007/s00217-010-1370-z
Van Dyck, S. (2010). The impact of singlet oxygen on lipid oxidation in foods. E. A. Decker In Oxidation in foods and beverages and antioxidant applications: Understanding mechanisms of oxidation and antioxidant activity (pp. 57-75). Woodhead Publishing Series in Food Science, Technology and Nutrition. https://doi.org/10.1533/9780857090447.1.57.
Wang, Z., He, Z., Emara, A. M., Gan, X., & Li, H. (2019). Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry, 288, 405-412. https://doi.org/10.1016/j.foodchem.2019.02.126
Winther, J. R., & Thorpe, C. (2014). Quantification of thiols and disulfides. Biochimica et Biophysica Acta - General Subjects, 1840(2), 838-846. https://doi.org/10.1016/j.bbagen.2013.03.031
Xiong, Y. L., Park, D., & Ooizumi, T. (2009). Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments. Journal of Agricultural and Food Chemistry, 57(1), 153-159. https://doi.org/10.1021/jf8024453
Yin, S., Faustman, C., Tatiyaborworntham, N., Ramanathan, R., Maheswarappa, N. B., Mancini, R. A., … Sun, Q. (2011). Species-specific myoglobin oxidation. Journal of Agricultural and Food Chemistry, 59(22), 12198-12203. https://doi.org/10.1021/jf202844t
Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191-1201. https://doi.org/10.1080/10408398.2011.577540

Auteurs

Francesca Soglia (F)

Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena, FC, 47521, Italy.

Giulia Baldi (G)

Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena, FC, 47521, Italy.

Massimiliano Petracci (M)

Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena, FC, 47521, Italy.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH